Search (2 results, page 1 of 1)

  • × author_ss:"An, A."
  1. Liu, Y.; Huang, X.; An, A.: Personalized recommendation with adaptive mixture of markov models (2007) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 606) [ClassicSimilarity], result of:
              0.010148063 = score(doc=606,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 606, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With more and more information available on the Internet, the task of making personalized recommendations to assist the user's navigation has become increasingly important. Considering there might be millions of users with different backgrounds accessing a Web site everyday, it is infeasible to build a separate recommendation system for each user. To address this problem, clustering techniques can first be employed to discover user groups. Then, user navigation patterns for each group can be discovered, to allow the adaptation of a Web site to the interest of each individual group. In this paper, we propose to model user access sequences as stochastic processes, and a mixture of Markov models based approach is taken to cluster users and to capture the sequential relationships inherent in user access histories. Several important issues that arise in constructing the Markov models are also addressed. The first issue lies in the complexity of the mixture of Markov models. To improve the efficiency of building/maintaining the mixture of Markov models, we develop a lightweight adapt-ive algorithm to update the model parameters without recomputing model parameters from scratch. The second issue concerns the proper selection of training data for building the mixture of Markov models. We investigate two different training data selection strategies and perform extensive experiments to compare their effectiveness on a real dataset that is generated by a Web-based knowledge management system, Livelink.
    Type
    a
  2. Huang, X.; Peng, F,; An, A.; Schuurmans, D.: Dynamic Web log session identification with statistical language models (2004) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 3096) [ClassicSimilarity], result of:
              0.007030784 = score(doc=3096,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 3096, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3096)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel session identification method based an statistical language modeling. Unlike standard timeout methods, which use fixed time thresholds for session identification, we use an information theoretic approach that yields more robust results for identifying session boundaries. We evaluate our new approach by learning interesting association rules from the segmented session files. We then compare the performance of our approach to three standard session identification methods-the standard timeout method, the reference length method, and the maximal forward reference method-and find that our statistical language modeling approach generally yields superior results. However, as with every method, the performance of our technique varies with changing parameter settings. Therefore, we also analyze the influence of the two key factors in our language-modeling-based approach: the choice of smoothing technique and the language model order. We find that all standard smoothing techniques, save one, perform weIl, and that performance is robust to language model order.
    Type
    a