Search (3 results, page 1 of 1)

  • × author_ss:"Assem, M. van"
  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  1. Assem, M. van; Gangemi, A.; Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation (2006) 0.02
    0.017837884 = product of:
      0.071351536 = sum of:
        0.071351536 = weight(_text_:description in 4641) [ClassicSimilarity], result of:
          0.071351536 = score(doc=4641,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.3082126 = fieldWeight in 4641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.046875 = fieldNorm(doc=4641)
      0.25 = coord(1/4)
    
    Abstract
    This paper presents an overview of the work in progress at the W3C to produce a standard conversion of WordNet to the RDF/OWL representation language in use in the SemanticWeb community. Such a standard representation is useful to provide application developers a high-quality resource and to promote interoperability. Important requirements in this conversion process are that it should be complete and should stay close to WordNet's conceptual model. The paper explains the steps taken to produce the conversion and details design decisions such as the composition of the class hierarchy and properties, the addition of suitable OWL semantics and the chosen format of the URIs. Additional topics include a strategy to incorporate OWL and RDFS semantics in one schema such that both RDF(S) infrastructure and OWL infrastructure can interpret the information correctly, problems encountered in understanding the Prolog source files and the description of the two versions that are provided (Basic and Full) to accommodate different usages of WordNet.
  2. Assem, M. van; Rijgersberg, H.; Wigham, M.; Top, J.: Converting and annotating quantitative data tables (2010) 0.01
    0.014864903 = product of:
      0.05945961 = sum of:
        0.05945961 = weight(_text_:description in 4705) [ClassicSimilarity], result of:
          0.05945961 = score(doc=4705,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.25684384 = fieldWeight in 4705, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4705)
      0.25 = coord(1/4)
    
    Abstract
    Companies, governmental agencies and scientists produce a large amount of quantitative (research) data, consisting of measurements ranging from e.g. the surface temperatures of an ocean to the viscosity of a sample of mayonnaise. Such measurements are stored in tables in e.g. spreadsheet files and research reports. To integrate and reuse such data, it is necessary to have a semantic description of the data. However, the notation used is often ambiguous, making automatic interpretation and conversion to RDF or other suitable format diffiult. For example, the table header cell "f(Hz)" refers to frequency measured in Hertz, but the symbol "f" can also refer to the unit farad or the quantities force or luminous flux. Current annotation tools for this task either work on less ambiguous data or perform a more limited task. We introduce new disambiguation strategies based on an ontology, which allows to improve performance on "sloppy" datasets not yet targeted by existing systems.
  3. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.005059587 = product of:
      0.020238347 = sum of:
        0.020238347 = product of:
          0.040476695 = sum of:
            0.040476695 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.040476695 = score(doc=4649,freq=2.0), product of:
                0.17436278 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04979191 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:40:22