Search (3 results, page 1 of 1)

  • × author_ss:"Azzopardi, L."
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Baillie, M.; Azzopardi, L.; Ruthven, I.: Evaluating epistemic uncertainty under incomplete assessments (2008) 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 2065) [ClassicSimilarity], result of:
              0.04620442 = score(doc=2065,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 2065, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2065)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The thesis of this study is to propose an extended methodology for laboratory based Information Retrieval evaluation under incomplete relevance assessments. This new methodology aims to identify potential uncertainty during system comparison that may result from incompleteness. The adoption of this methodology is advantageous, because the detection of epistemic uncertainty - the amount of knowledge (or ignorance) we have about the estimate of a system's performance - during the evaluation process can guide and direct researchers when evaluating new systems over existing and future test collections. Across a series of experiments we demonstrate how this methodology can lead towards a finer grained analysis of systems. In particular, we show through experimentation how the current practice in Information Retrieval evaluation of using a measurement depth larger than the pooling depth increases uncertainty during system comparison.
  2. Ruthven, I.; Baillie, M.; Azzopardi, L.; Bierig, R.; Nicol, E.; Sweeney, S.; Yaciki, M.: Contextual factors affecting the utility of surrogates within exploratory search (2008) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 2042) [ClassicSimilarity], result of:
              0.038116705 = score(doc=2042,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 2042, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2042)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Beitrag eines Themenschwerpunktes "Evaluating exploratory search systems"
  3. Balog, K.; Azzopardi, L.; Rijke, M. de: ¬A language modeling framework for expert finding (2009) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 2447) [ClassicSimilarity], result of:
              0.03267146 = score(doc=2447,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 2447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2447)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Statistical language models have been successfully applied to many information retrieval tasks, including expert finding: the process of identifying experts given a particular topic. In this paper, we introduce and detail language modeling approaches that integrate the representation, association and search of experts using various textual data sources into a generative probabilistic framework. This provides a simple, intuitive, and extensible theoretical framework to underpin research into expertise search. To demonstrate the flexibility of the framework, two search strategies to find experts are modeled that incorporate different types of evidence extracted from the data, before being extended to also incorporate co-occurrence information. The models proposed are evaluated in the context of enterprise search systems within an intranet environment, where it is reasonable to assume that the list of experts is known, and that data to be mined is publicly accessible. Our experiments show that excellent performance can be achieved by using these models in such environments, and that this theoretical and empirical work paves the way for future principled extensions.