Search (6 results, page 1 of 1)

  • × author_ss:"Beheshti, J."
  • × year_i:[2000 TO 2010}
  1. Large, A.; Beheshti, J.; Rahman, T.: Design criteria for children's Web portals : the users speak out (2002) 0.05
    0.04789946 = product of:
      0.09579892 = sum of:
        0.09579892 = sum of:
          0.053513464 = weight(_text_:t in 197) [ClassicSimilarity], result of:
            0.053513464 = score(doc=197,freq=2.0), product of:
              0.20491594 = queryWeight, product of:
                3.9394085 = idf(docFreq=2338, maxDocs=44218)
                0.05201693 = queryNorm
              0.26114836 = fieldWeight in 197, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9394085 = idf(docFreq=2338, maxDocs=44218)
                0.046875 = fieldNorm(doc=197)
          0.042285454 = weight(_text_:22 in 197) [ClassicSimilarity], result of:
            0.042285454 = score(doc=197,freq=2.0), product of:
              0.18215442 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05201693 = queryNorm
              0.23214069 = fieldWeight in 197, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=197)
      0.5 = coord(1/2)
    
    Date
    2. 6.2005 10:34:22
  2. Large, A.; Beheshti, J.; Rahman, T.: Gender differences in collaborative Web searching behavior : an elementary school study (2002) 0.01
    0.013378366 = product of:
      0.026756732 = sum of:
        0.026756732 = product of:
          0.053513464 = sum of:
            0.053513464 = weight(_text_:t in 2582) [ClassicSimilarity], result of:
              0.053513464 = score(doc=2582,freq=2.0), product of:
                0.20491594 = queryWeight, product of:
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.05201693 = queryNorm
                0.26114836 = fieldWeight in 2582, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2582)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  3. Cole, C.; Leide, J.; Beheshti, J.; Large, A.; Brooks, M.: Investigating the Anomalous States of Knowledge hypothesis in a real-life problem situation : a study of history and psychology undergraduates seeking information for a course essay (2005) 0.01
    0.010557194 = product of:
      0.021114388 = sum of:
        0.021114388 = product of:
          0.084457554 = sum of:
            0.084457554 = weight(_text_:authors in 4814) [ClassicSimilarity], result of:
              0.084457554 = score(doc=4814,freq=4.0), product of:
                0.2371355 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05201693 = queryNorm
                0.35615736 = fieldWeight in 4814, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4814)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    The authors present a study of the real-life information needs of 59 McGill University undergraduates researching essay topics for either a history or psychology course, interviewed just after they had selected their essay topic. The interview's purpose was to transform the undergraduate's query from general topic terms, based an vague conceptions of their essay topic, to an information need-based query. To chart the transformation, the authors investigate N. J. Belkin, R. N. Oddy, and H. M. Brooks' Anomalous States of Knowledge (ASK) hypothesis (1982a, 1982b), which links the user's ASK to a relevant document set via a common code based an structural facets. In the present study an interoperable structural code based an eight essay styles is created, then notions of structural facets compatible with a highimpact essay structure are presented. The important findings of the study are: (a) the undergraduates' topic statements and terms derived from it do not constitute an effective information need statement because for most of the subjects in the study the topic terms conformed to a low-impact essay style; (b) essay style is an effective interoperable structural code for charting the evolution of the undergraduate's knowledge state from ASK to partial resolution of the ASK in an information need statement.
  4. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.01
    0.010557194 = product of:
      0.021114388 = sum of:
        0.021114388 = product of:
          0.084457554 = sum of:
            0.084457554 = weight(_text_:authors in 197) [ClassicSimilarity], result of:
              0.084457554 = score(doc=197,freq=4.0), product of:
                0.2371355 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05201693 = queryNorm
                0.35615736 = fieldWeight in 197, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=197)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    The authors report the findings of a study that analyzes and compares the query logs of PsycINFO for psychology and the two history databases of ABC-Clio: Historical Abstracts and America: History and Life to establish the sociological nature of information need, searching, and seeking in history versus psychology. Two problems are addressed: (a) What level of query log analysis - by individual query terms, by co-occurrence of word pairs, or by multiword terms (MWTs) - best serves as data for categorizing the queries to these two subject-bound databases; and (b) how can the differences in the nature of the queries to history versus psychology databases aid in our understanding of user search behavior and the information needs of their respective users. The authors conclude that MWTs provide the most effective snapshot of user searching behavior for query categorization. The MWTs to ABC-Clio indicate specific instances of historical events, people, and regions, whereas the MWTs to PsycINFO indicate concepts roughly equivalent to descriptors used by PsycINFO's own classification scheme. The average length of queries is 3.16 terms for PsycINFO and 3.42 for ABC-Clio, which breaks from findings for other reference and scholarly search engine studies, bringing query length closer in line to findings for general Web search engines like Excite.
  5. Large, J.A.; Beheshti, J.: Interface design, Web portals, and children (2005) 0.01
    0.008958076 = product of:
      0.017916152 = sum of:
        0.017916152 = product of:
          0.07166461 = sum of:
            0.07166461 = weight(_text_:authors in 5547) [ClassicSimilarity], result of:
              0.07166461 = score(doc=5547,freq=2.0), product of:
                0.2371355 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05201693 = queryNorm
                0.30220953 = fieldWeight in 5547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5547)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Children seek information in order to complete school projects on a wide variety of topics, as well as to support their various leisure activities. Such information can be found in print documents, but increasingly young people are turning to the Web to meet their information needs. In order to exploit this resource, however, children must be able to search or browse digital information through the intermediation of an interface. In particular, they must use Web-based portals that in most cases have been designed for adult users. Guidelines for interface design are not hard to find, but typically they also postulate adult rather than juvenile users. The authors discuss their own research work that has focused upon what young people themselves have to say about the design of portal interfaces. They conclude that specific interface design guidelines are required for young users rather than simply relying upon general design guidelines, and that in order to formulate such guidelines it is necessary to actively include the young people themselves in this process.
  6. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.01
    0.00891891 = product of:
      0.01783782 = sum of:
        0.01783782 = product of:
          0.03567564 = sum of:
            0.03567564 = weight(_text_:t in 36) [ClassicSimilarity], result of:
              0.03567564 = score(doc=36,freq=2.0), product of:
                0.20491594 = queryWeight, product of:
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.05201693 = queryNorm
                0.17409891 = fieldWeight in 36, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.03125 = fieldNorm(doc=36)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).