Search (5 results, page 1 of 1)

  • × author_ss:"Borgman, C.L."
  • × type_ss:"a"
  • × year_i:[1990 TO 2000}
  1. Borgman, C.L.: What are Digital Libraries? : competing visions (1999) 0.01
    0.014837332 = product of:
      0.05934933 = sum of:
        0.05934933 = product of:
          0.11869866 = sum of:
            0.11869866 = weight(_text_:processing in 2050) [ClassicSimilarity], result of:
              0.11869866 = score(doc=2050,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.6261658 = fieldWeight in 2050, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2050)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 35(1999) no.3, S.227-243
  2. Borgman, C.L.; Hirsh, S.G.; Hiller, J.: Rethinking online monitoring methods for information retrieval systems : from search product to search process (1996) 0.01
    0.014458986 = product of:
      0.057835944 = sum of:
        0.057835944 = weight(_text_:data in 4385) [ClassicSimilarity], result of:
          0.057835944 = score(doc=4385,freq=10.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.39059696 = fieldWeight in 4385, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4385)
      0.25 = coord(1/4)
    
    Abstract
    Searching information retrieval systems is a highly interactive, iterative process that cannot be understood simply by comparing the output of a search session (the 'search product') to a query stated in advance. In this article, we examine evaluation goals and methods for studying information retrieval behavior, drawing examples from our own research and that of others. We limit our review to research that employs online monitoring, also known as transaction log analysis. Online monitoring is one of few methods that can capture detailed data on the search process at a reasonable cost; these data can be used to build quantitative models or to support qualitative interpretations of quatitative results. Monitoring is a data collection technique rather than a research design, and can be employed in experimental of field studies, whether alone or combined with other data collection methods. Based on the the research questions of interest, the researcher must determine what variables to collect from each data source, which to treat as independent varaibles to manipulate, and which to treat as dependent variables to observe effects. Studies of searching behavior often treat search task and searcher characteristics as independent variables and may manipulate other independent variables specific to the research questions addressed. Search outcomes, time, and search paths frequently are treated as dependent variables. We discuss each of these sets of variables, illustrating them with sample results from the literature and from our own research. Our examples are drawn from the Science Library Catalog project, a 7-year study of children's searching behavior on an experimental retrieval system. We close with a brief discussion of the implications of these results for the design of information retrieval systems
  3. Borgman, C.L.: Multi-media, multi-cultural, and multi-lingual digital libraries : or how do we exchange data In 400 languages? (1997) 0.01
    0.011087317 = product of:
      0.044349268 = sum of:
        0.044349268 = weight(_text_:data in 1263) [ClassicSimilarity], result of:
          0.044349268 = score(doc=1263,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29951423 = fieldWeight in 1263, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1263)
      0.25 = coord(1/4)
    
    Abstract
    The Internet would not be very useful if communication were limited to textual exchanges between speakers of English located in the United States. Rather, its value lies in its ability to enable people from multiple nations, speaking multiple languages, to employ multiple media in interacting with each other. While computer networks broke through national boundaries long ago, they remain much more effective for textual communication than for exchanges of sound, images, or mixed media -- and more effective for communication in English than for exchanges in most other languages, much less interactions involving multiple languages. Supporting searching and display in multiple languages is an increasingly important issue for all digital libraries accessible on the Internet. Even if a digital library contains materials in only one language, the content needs to be searchable and displayable on computers in countries speaking other languages. We need to exchange data between digital libraries, whether in a single language or in multiple languages. Data exchanges may be large batch updates or interactive hyperlinks. In any of these cases, character sets must be represented in a consistent manner if exchanges are to succeed. Issues of interoperability, portability, and data exchange related to multi-lingual character sets have received surprisingly little attention in the digital library community or in discussions of standards for information infrastructure, except in Europe. The landmark collection of papers on Standards Policy for Information Infrastructure, for example, contains no discussion of multi-lingual issues except for a passing reference to the Unicode standard. The goal of this short essay is to draw attention to the multi-lingual issues involved in designing digital libraries accessible on the Internet. Many of the multi-lingual design issues parallel those of multi-media digital libraries, a topic more familiar to most readers of D-Lib Magazine. This essay draws examples from multi-media DLs to illustrate some of the urgent design challenges in creating a globally distributed network serving people who speak many languages other than English. First we introduce some general issues of medium, culture, and language, then discuss the design challenges in the transition from local to global systems, lastly addressing technical matters. The technical issues involve the choice of character sets to represent languages, similar to the choices made in representing images or sound. However, the scale of the language problem is far greater. Standards for multi-media representation are being adopted fairly rapidly, in parallel with the availability of multi-media content in electronic form. By contrast, we have hundreds (and sometimes thousands) of years worth of textual materials in hundreds of languages, created long before data encoding standards existed. Textual content from past and present is being encoded in language and application-specific representations that are difficult to exchange without losing data -- if they exchange at all. We illustrate the multi-language DL challenge with examples drawn from the research library community, which typically handles collections of materials in 400 or so languages. These are problems faced not only by developers of digital libraries, but by those who develop and manage any communication technology that crosses national or linguistic boundaries.
  4. Borgman, C.L.: Automation is the answer, but what is the question? : Progress and prospects for Central and Eastern European libraries (1996) 0.01
    0.007418666 = product of:
      0.029674664 = sum of:
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 5831) [ClassicSimilarity], result of:
              0.05934933 = score(doc=5831,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 5831, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5831)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In the former Yugoslavia and Soviet Bloc countries of Central and Eastern Europe most information technology was unavailable, unaffordable or discouraged for forty years. These countries realise that they must improve their internal infrastructures if they are to become integral parts of the global information infrastructure. We report the results of a mail survey conducted in late 1994 and early 1995 of 70 research libraries in Croatia, Czech Republic, Hungary, Poland, Slovakia and Slovenia, building on the findings from interviews conducted with 300 persons in the region in 1993-1994. Results show that these libraries are acquiring automated processing systems, CD-ROM databases, and connections to computer networks at a rapid rate and that automation activity has increased substantially since 1989
  5. Borgman, C.L.: Will the global information infrastructure be the library of the future? : Central and Eastern Europe as a case example (1996) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 5507) [ClassicSimilarity], result of:
              0.038066804 = score(doc=5507,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 5507, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5507)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    IFLA journal. 22(1996) no.2, S.121-127