Search (41 results, page 1 of 3)

  • × author_ss:"Bornmann, L."
  • × theme_ss:"Informetrie"
  • × type_ss:"a"
  1. Bornmann, L.: Interrater reliability and convergent validity of F1000Prime peer review (2015) 0.01
    0.0058696326 = product of:
      0.041087426 = sum of:
        0.036075342 = weight(_text_:system in 2328) [ClassicSimilarity], result of:
          0.036075342 = score(doc=2328,freq=10.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.46686378 = fieldWeight in 2328, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2328)
        0.0050120843 = weight(_text_:information in 2328) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=2328,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 2328, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2328)
      0.14285715 = coord(2/14)
    
    Abstract
    Peer review is the backbone of modern science. F1000Prime is a postpublication peer review system of the biomedical literature (papers from medical and biological journals). This study is concerned with the interrater reliability and convergent validity of the peer recommendations formulated in the F1000Prime peer review system. The study is based on about 100,000 papers with recommendations from faculty members. Even if intersubjectivity plays a fundamental role in science, the analyses of the reliability of the F1000Prime peer review system show a rather low level of agreement between faculty members. This result is in agreement with most other studies that have been published on the journal peer review system. Logistic regression models are used to investigate the convergent validity of the F1000Prime peer review system. As the results show, the proportion of highly cited papers among those selected by the faculty members is significantly higher than expected. In addition, better recommendation scores are also associated with higher performing papers.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2415-2426
  2. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.00
    0.004281203 = product of:
      0.029968418 = sum of:
        0.0100241685 = weight(_text_:information in 1239) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=1239,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 1239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1239)
        0.019944249 = product of:
          0.039888497 = sum of:
            0.039888497 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.039888497 = score(doc=1239,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    18. 3.2014 19:13:22
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.866-867
  3. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.00
    0.0035579887 = product of:
      0.02490592 = sum of:
        0.0100241685 = weight(_text_:information in 2779) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=2779,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 2779, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
        0.014881751 = weight(_text_:retrieval in 2779) [ClassicSimilarity], result of:
          0.014881751 = score(doc=2779,freq=2.0), product of:
            0.07421378 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02453417 = queryNorm
            0.20052543 = fieldWeight in 2779, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
      0.14285715 = coord(2/14)
    
    Abstract
    Normalization of citation scores using reference sets based on Web of Science subject categories (WCs) has become an established ("best") practice in evaluative bibliometrics. For example, the Times Higher Education World University Rankings are, among other things, based on this operationalization. However, WCs were developed decades ago for the purpose of information retrieval and evolved incrementally with the database; the classification is machine-based and partially manually corrected. Using the WC "information science & library science" and the WCs attributed to journals in the field of "science and technology studies," we show that WCs do not provide sufficient analytical clarity to carry bibliometric normalization in evaluation practices because of "indexer effects." Can the compliance with "best practices" be replaced with an ambition to develop "best possible practices"? New research questions can then be envisaged.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.707-714
  4. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.0028541351 = product of:
      0.019978944 = sum of:
        0.006682779 = weight(_text_:information in 1431) [ClassicSimilarity], result of:
          0.006682779 = score(doc=1431,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1551638 = fieldWeight in 1431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.0132961655 = product of:
          0.026592331 = sum of:
            0.026592331 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.026592331 = score(doc=1431,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    22. 8.2014 17:05:18
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1939-1943
  5. Bornmann, L.; Schier, H.; Marx, W.; Daniel, H.-D.: Is interactive open access publishing able to identify high-impact submissions? : a study on the predictive validity of Atmospheric Chemistry and Physics by using percentile rank classes (2011) 0.00
    0.0025173177 = product of:
      0.017621223 = sum of:
        0.013444485 = weight(_text_:system in 4132) [ClassicSimilarity], result of:
          0.013444485 = score(doc=4132,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.17398985 = fieldWeight in 4132, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4132)
        0.004176737 = weight(_text_:information in 4132) [ClassicSimilarity], result of:
          0.004176737 = score(doc=4132,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 4132, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4132)
      0.14285715 = coord(2/14)
    
    Abstract
    In a comprehensive research project, we investigated the predictive validity of selection decisions and reviewers' ratings at the open access journal Atmospheric Chemistry and Physics (ACP). ACP is a high-impact journal publishing papers on the Earth's atmosphere and the underlying chemical and physical processes. Scientific journals have to deal with the following question concerning the predictive validity: Are in fact the "best" scientific works selected from the manuscripts submitted? In this study we examined whether selecting the "best" manuscripts means selecting papers that after publication show top citation performance as compared to other papers in this research area. First, we appraised the citation impact of later published manuscripts based on the percentile citedness rank classes of the population distribution (scaling in a specific subfield). Second, we analyzed the association between the decisions (n = 677 accepted or rejected, but published elsewhere manuscripts) or ratings (reviewers' ratings for n = 315 manuscripts), respectively, and the citation impact classes of the manuscripts. The results confirm the predictive validity of the ACP peer review system.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.1, S.61-71
  6. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.0025173177 = product of:
      0.017621223 = sum of:
        0.013444485 = weight(_text_:system in 5225) [ClassicSimilarity], result of:
          0.013444485 = score(doc=5225,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.17398985 = fieldWeight in 5225, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5225)
        0.004176737 = weight(_text_:information in 5225) [ClassicSimilarity], result of:
          0.004176737 = score(doc=5225,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.09697737 = fieldWeight in 5225, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5225)
      0.14285715 = coord(2/14)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.5, S.509-525
  7. Bornmann, L.; Daniel, H.-D.: Selecting manuscripts for a high-impact journal through peer review : a citation analysis of communications that were accepted by Angewandte Chemie International Edition, or rejected but published elsewhere (2008) 0.00
    0.0022115754 = product of:
      0.015481027 = sum of:
        0.010755588 = weight(_text_:system in 2381) [ClassicSimilarity], result of:
          0.010755588 = score(doc=2381,freq=2.0), product of:
            0.07727166 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02453417 = queryNorm
            0.13919188 = fieldWeight in 2381, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2381)
        0.0047254385 = weight(_text_:information in 2381) [ClassicSimilarity], result of:
          0.0047254385 = score(doc=2381,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.10971737 = fieldWeight in 2381, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2381)
      0.14285715 = coord(2/14)
    
    Abstract
    All journals that use peer review have to deal with the following question: Does the peer review system fulfill its declared objective to select the best scientific work? We investigated the journal peer-review process at Angewandte Chemie International Edition (AC-IE), one of the prime chemistry journals worldwide, and conducted a citation analysis for Communications that were accepted by the journal (n = 878) or rejected but published elsewhere (n = 959). The results of negative binomial-regression models show that holding all other model variables constant, being accepted by AC-IE increases the expected number of citations by up to 50%. A comparison of average citation counts (with 95% confidence intervals) of accepted and rejected (but published elsewhere) Communications with international scientific reference standards was undertaken. As reference standards, (a) mean citation counts for the journal set provided by Thomson Reuters corresponding to the field chemistry and (b) specific reference standards that refer to the subject areas of Chemical Abstracts were used. When compared to reference standards, the mean impact on chemical research is for the most part far above average not only for accepted Communications but also for rejected (but published elsewhere) Communications. However, average and below-average scientific impact is to be expected significantly less frequently for accepted Communications than for rejected Communications. All in all, the results of this study confirm that peer review at AC-IE is able to select the best scientific work with the highest impact on chemical research.
    Content
    Vgl. auch: Erratum Re: Selecting manuscripts for a high-impact journal through peer review: A citation analysis of communications that were accepted by Agewandte Chemie International Edition, or rejected but published elsewhere. In: Journal of the American Society for Information Science and Technology 59(2008) no.12, S.2037-2038.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.11, S.1841-1852
  8. Bornmann, L.: How to analyze percentile citation impact data meaningfully in bibliometrics : the statistical analysis of distributions, percentile rank classes, and top-cited papers (2013) 0.00
    0.0021406014 = product of:
      0.014984209 = sum of:
        0.0050120843 = weight(_text_:information in 656) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=656,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 656, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=656)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 656) [ClassicSimilarity], result of:
              0.019944249 = score(doc=656,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=656)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    22. 3.2013 19:44:17
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.587-595
  9. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.00
    0.0021406014 = product of:
      0.014984209 = sum of:
        0.0050120843 = weight(_text_:information in 4681) [ClassicSimilarity], result of:
          0.0050120843 = score(doc=4681,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.116372846 = fieldWeight in 4681, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.009972124 = product of:
          0.019944249 = sum of:
            0.019944249 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.019944249 = score(doc=4681,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Date
    8. 1.2019 18:22:45
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.2, S.198-201
  10. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.00
    0.0020309861 = product of:
      0.014216902 = sum of:
        0.005906798 = weight(_text_:information in 4186) [ClassicSimilarity], result of:
          0.005906798 = score(doc=4186,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 4186, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4186)
        0.008310104 = product of:
          0.016620208 = sum of:
            0.016620208 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.016620208 = score(doc=4186,freq=2.0), product of:
                0.085914485 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02453417 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.217-229
  11. Bornmann, L.: Nature's top 100 revisited (2015) 0.00
    8.438283E-4 = product of:
      0.011813596 = sum of:
        0.011813596 = weight(_text_:information in 2351) [ClassicSimilarity], result of:
          0.011813596 = score(doc=2351,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.27429342 = fieldWeight in 2351, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2351)
      0.071428575 = coord(1/14)
    
    Content
    Bezug: Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2714. Vgl.: http://onlinelibrary.wiley.com/doi/10.1002/asi.23554/abstract.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2166
  12. Bornmann, L.: On the function of university rankings (2014) 0.00
    7.160121E-4 = product of:
      0.0100241685 = sum of:
        0.0100241685 = weight(_text_:information in 1188) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=1188,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 1188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1188)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.428-429
  13. Bornmann, L.: Is there currently a scientific revolution in Scientometrics? (2014) 0.00
    7.160121E-4 = product of:
      0.0100241685 = sum of:
        0.0100241685 = weight(_text_:information in 1206) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=1206,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 1206, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1206)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.3, S.647-648
  14. Bornmann, L.; Bauer, J.; Haunschild, R.: Distribution of women and men among highly cited scientists (2015) 0.00
    7.160121E-4 = product of:
      0.0100241685 = sum of:
        0.0100241685 = weight(_text_:information in 2349) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=2349,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 2349, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2349)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2715-2716
  15. Bornmann, L.: What do altmetrics counts mean? : a plea for content analyses (2016) 0.00
    7.160121E-4 = product of:
      0.0100241685 = sum of:
        0.0100241685 = weight(_text_:information in 2858) [ClassicSimilarity], result of:
          0.0100241685 = score(doc=2858,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.23274569 = fieldWeight in 2858, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2858)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.1016-1017
  16. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    6.6710485E-4 = product of:
      0.009339468 = sum of:
        0.009339468 = weight(_text_:information in 4919) [ClassicSimilarity], result of:
          0.009339468 = score(doc=4919,freq=10.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.21684799 = fieldWeight in 4919, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
      0.071428575 = coord(1/14)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.11, S.2133-2146
  17. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.00
    5.966767E-4 = product of:
      0.008353474 = sum of:
        0.008353474 = weight(_text_:information in 3231) [ClassicSimilarity], result of:
          0.008353474 = score(doc=3231,freq=8.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.19395474 = fieldWeight in 3231, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3231)
      0.071428575 = coord(1/14)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3095-3100
  18. Bornmann, L.; Bauer, J.: Which of the world's institutions employ the most highly cited researchers : an analysis of the data from highlycited.com (2015) 0.00
    4.7734138E-4 = product of:
      0.006682779 = sum of:
        0.006682779 = weight(_text_:information in 1556) [ClassicSimilarity], result of:
          0.006682779 = score(doc=1556,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1551638 = fieldWeight in 1556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=1556)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2146-2148
  19. Bornmann, L.; Bauer, J.: Which of the world's institutions employ the most highly cited researchers : an analysis of the data from highlycited.com (2015) 0.00
    4.7734138E-4 = product of:
      0.006682779 = sum of:
        0.006682779 = weight(_text_:information in 2223) [ClassicSimilarity], result of:
          0.006682779 = score(doc=2223,freq=2.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.1551638 = fieldWeight in 2223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2223)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2146-2148
  20. Bornmann, L.; Mutz, R.: Growth rates of modern science : a bibliometric analysis based on the number of publications and cited references (2015) 0.00
    4.2191416E-4 = product of:
      0.005906798 = sum of:
        0.005906798 = weight(_text_:information in 2261) [ClassicSimilarity], result of:
          0.005906798 = score(doc=2261,freq=4.0), product of:
            0.04306919 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02453417 = queryNorm
            0.13714671 = fieldWeight in 2261, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2261)
      0.071428575 = coord(1/14)
    
    Abstract
    Many studies (in information science) have looked at the growth of science. In this study, we reexamine the question of the growth of science. To do this we (a) use current data up to publication year 2012 and (b) analyze the data across all disciplines and also separately for the natural sciences and for the medical and health sciences. Furthermore, the data were analyzed with an advanced statistical technique-segmented regression analysis-which can identify specific segments with similar growth rates in the history of science. The study is based on two different sets of bibliometric data: (a) the number of publications held as source items in the Web of Science (WoS, Thomson Reuters) per publication year and (b) the number of cited references in the publications of the source items per cited reference year. We looked at the rate at which science has grown since the mid-1600s. In our analysis of cited references we identified three essential growth phases in the development of science, which each led to growth rates tripling in comparison with the previous phase: from less than 1% up to the middle of the 18th century, to 2 to 3% up to the period between the two world wars, and 8 to 9% to 2010.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2215-2222