Search (44 results, page 3 of 3)

  • × author_ss:"Bornmann, L."
  • × theme_ss:"Informetrie"
  1. Bornmann, L.; Moya Anegón, F.de: What proportion of excellent papers makes an institution one of the best worldwide? : Specifying thresholds for the interpretation of the results of the SCImago Institutions Ranking and the Leiden Ranking (2014) 0.00
    9.701671E-4 = product of:
      0.0019403342 = sum of:
        0.0019403342 = product of:
          0.0058210026 = sum of:
            0.0058210026 = weight(_text_:a in 1235) [ClassicSimilarity], result of:
              0.0058210026 = score(doc=1235,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.11032722 = fieldWeight in 1235, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1235)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    University rankings generally present users with the problem of placing the results given for an institution in context. Only a comparison with the performance of all other institutions makes it possible to say exactly where an institution stands. In order to interpret the results of the SCImago Institutions Ranking (based on Scopus data) and the Leiden Ranking (based on Web of Science data), in this study we offer thresholds with which it is possible to assess whether an institution belongs to the top 1%, top 5%, top 10%, top 25%, or top 50% of institutions in the world. The thresholds are based on the excellence rate or PPtop 10%. Both indicators measure the proportion of an institution's publications which belong to the 10% most frequently cited publications and are the most important indicators for measuring institutional impact. For example, while an institution must achieve a value of 24.63% in the Leiden Ranking 2013 to be considered one of the top 1% of institutions worldwide, the SCImago Institutions Ranking requires 30.2%.
    Type
    a
  2. Bornmann, L.; Haunschild, R.: ¬An empirical look at the nature index (2017) 0.00
    7.9213816E-4 = product of:
      0.0015842763 = sum of:
        0.0015842763 = product of:
          0.0047528287 = sum of:
            0.0047528287 = weight(_text_:a in 3432) [ClassicSimilarity], result of:
              0.0047528287 = score(doc=3432,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.090081796 = fieldWeight in 3432, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3432)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    In November 2014, the Nature Index (NI) was introduced (see http://www.natureindex.com) by the Nature Publishing Group (NPG). The NI comprises the primary research articles published in the past 12 months in a selection of reputable journals. Starting from two short comments on the NI (Haunschild & Bornmann, 2015a, 2015b), we undertake an empirical analysis of the NI using comprehensive country data. We investigate whether the huge efforts of computing the NI are justified and whether the size-dependent NI indicators should be complemented by size-independent variants. The analysis uses data from the Max Planck Digital Library in-house database (which is based on Web of Science data) and from the NPG. In the first step of the analysis, we correlate the NI with other metrics that are simpler to generate than the NI. The resulting large correlation coefficients point out that the NI produces similar results as simpler solutions. In the second step of the analysis, relative and size-independent variants of the NI are generated that should be additionally presented by the NPG. The size-dependent NI indicators favor large countries (or institutions) and the top-performing small countries (or institutions) do not come into the picture.
    Type
    a
  3. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.00
    6.721515E-4 = product of:
      0.001344303 = sum of:
        0.001344303 = product of:
          0.004032909 = sum of:
            0.004032909 = weight(_text_:a in 2779) [ClassicSimilarity], result of:
              0.004032909 = score(doc=2779,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 2779, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2779)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Type
    a
  4. Bornmann, L.: Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? : an analysis based on data from F1000Prime and normalized citation scores (2017) 0.00
    5.601262E-4 = product of:
      0.0011202524 = sum of:
        0.0011202524 = product of:
          0.0033607571 = sum of:
            0.0033607571 = weight(_text_:a in 3539) [ClassicSimilarity], result of:
              0.0033607571 = score(doc=3539,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06369744 = fieldWeight in 3539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3539)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Type
    a