Search (1 results, page 1 of 1)

  • × author_ss:"Bressan, M."
  • × theme_ss:"Suchmaschinen"
  • × year_i:[2010 TO 2020}
  1. Bressan, M.; Peserico, E.: Choose the damping, choose the ranking? (2010) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 2563) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=2563,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 2563, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2563)
      0.16666667 = coord(1/6)
    
    Abstract
    To what extent can changes in PageRank's damping factor affect node ranking? We prove that, at least on some graphs, the top k nodes assume all possible k! orderings as the damping factor varies, even if it varies within an arbitrarily small interval (e.g. [0.84999,0.85001][0.84999,0.85001]). Thus, the rank of a node for a given (finite set of discrete) damping factor(s) provides very little information about the rank of that node as the damping factor varies over a continuous interval. We bypass this problem introducing lineage analysis and proving that there is a simple condition, with a "natural" interpretation independent of PageRank, that allows one to verify "in one shot" if a node outperforms another simultaneously for all damping factors and all damping variables (informally, time variant damping factors). The novel notions of strong rank and weak rank of a node provide a measure of the fuzziness of the rank of that node, of the objective orderability of a graph's nodes, and of the quality of results returned by different ranking algorithms based on the random surfer model. We deploy our analytical tools on a 41M node snapshot of the .it Web domain and on a 0.7M node snapshot of the CiteSeer citation graph. Among other findings, we show that rank is indeed relatively stable in both graphs; that "classic" PageRank (d=0.85) marginally outperforms Weighted In-degree (d->0), mainly due to its ability to ferret out "niche" items; and that, for both the Web and CiteSeer, the ideal damping factor appears to be 0.8-0.9 to obtain those items of high importance to at least one (model of randomly surfing) user, but only 0.5-0.6 to obtain those items important to every (model of randomly surfing) user.