Search (2 results, page 1 of 1)

  • × author_ss:"Chan, S."
  1. Khoo, C.; Chan, S.; Niu, Y.: ¬The many facets of the cause-effect relation (2002) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1192) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1192,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1192, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1192)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter presents a broad survey of the cause-effect relation, with particular emphasis an how the relation is expressed in text. Philosophers have been grappling with the concept of causation for centuries. Researchers in social psychology have found that the human mind has a very complex mechanism for identifying and attributing the cause for an event. Inferring cause-effect relations between events and statements has also been found to be an important part of reading and text comprehension, especially for narrative text. Though many of the cause-effect relations in text are implied and have to be inferred by the reader, there is also a wide variety of linguistic expressions for explicitly indicating cause and effect. In addition, it has been found that certain words have "causal valence"-they bias the reader to attribute cause in certain ways. Cause-effect relations can also be divided into several different types.
    Type
    a
  2. Na, J.-C.; Sui, H.; Khoo, C.; Chan, S.; Zhou, Y.: Effectiveness of simple linguistic processing in automatic sentiment classification of product reviews (2004) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 2624) [ClassicSimilarity], result of:
              0.006765375 = score(doc=2624,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 2624, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2624)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper reports a study in automatic sentiment classification, i.e., automatically classifying documents as expressing positive or negative Sentiments/opinions. The study investigates the effectiveness of using SVM (Support Vector Machine) an various text features to classify product reviews into recommended (positive Sentiment) and not recommended (negative sentiment). Compared with traditional topical classification, it was hypothesized that syntactic and semantic processing of text would be more important for sentiment classification. In the first part of this study, several different approaches, unigrams (individual words), selected words (such as verb, adjective, and adverb), and words labelled with part-of-speech tags were investigated. A sample of 1,800 various product reviews was retrieved from Review Centre (www.reviewcentre.com) for the study. 1,200 reviews were used for training, and 600 for testing. Using SVM, the baseline unigram approach obtained an accuracy rate of around 76%. The use of selected words obtained a marginally better result of 77.33%. Error analysis suggests various approaches for improving classification accuracy: use of negation phrase, making inference from superficial words, and solving the problem of comments an parts. The second part of the study that is in progress investigates the use of negation phrase through simple linguistic processing to improve classification accuracy. This approach increased the accuracy rate up to 79.33%.
    Type
    a