Search (3 results, page 1 of 1)

  • × author_ss:"Chen, C."
  • × theme_ss:"Informetrie"
  • × type_ss:"a"
  1. Chen, C.; Cribbin, T.; Macredie, R.; Morar, S.: Visualizing and tracking the growth of competing paradigms : two case studies (2002) 0.02
    0.023150655 = product of:
      0.09260262 = sum of:
        0.05077526 = weight(_text_:case in 602) [ClassicSimilarity], result of:
          0.05077526 = score(doc=602,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
        0.04182736 = weight(_text_:studies in 602) [ClassicSimilarity], result of:
          0.04182736 = score(doc=602,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
      0.25 = coord(2/8)
    
  2. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.01206966 = product of:
      0.04827864 = sum of:
        0.034856133 = weight(_text_:studies in 5272) [ClassicSimilarity], result of:
          0.034856133 = score(doc=5272,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 5272, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.013422508 = product of:
          0.026845016 = sum of:
            0.026845016 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.026845016 = score(doc=5272,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
  3. Liu, S.; Chen, C.: ¬The differences between latent topics in abstracts and citation contexts of citing papers (2013) 0.01
    0.01206966 = product of:
      0.04827864 = sum of:
        0.034856133 = weight(_text_:studies in 671) [ClassicSimilarity], result of:
          0.034856133 = score(doc=671,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=671)
        0.013422508 = product of:
          0.026845016 = sum of:
            0.026845016 = weight(_text_:22 in 671) [ClassicSimilarity], result of:
              0.026845016 = score(doc=671,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19345059 = fieldWeight in 671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=671)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Although it is commonly expected that the citation context of a reference is likely to provide more detailed and direct information about the nature of a citation, few studies in the literature have specifically addressed the extent to which the information in different parts of a scientific publication differs. Do abstracts tend to use conceptually broader terms than sentences in a citation context in the body of a publication? In this article, we propose a method to analyze and compare latent topics in scientific publications, in particular, from abstracts of papers that cited a target reference and from sentences that cited the target reference. We conducted an experiment and applied topical modeling techniques to full-text papers in eight biomedicine journals. Topics derived from the two sources are compared in terms of their similarities and broad-narrow relationships defined based on information entropy. The results show that abstracts and citation contexts are characterized by distinct sets of topics with moderate overlaps. Furthermore, the results confirm that topics from abstracts of citing papers have broader terms than topics from citation contexts formed by citing sentences. The method and the findings could be used to enhance and extend the current methodologies for research evaluation and citation evaluation.
    Date
    22. 3.2013 19:50:00