Search (2 results, page 1 of 1)

  • × author_ss:"Chen, H."
  • × author_ss:"Ng, T.D."
  • × author_ss:"Schatz, B.R."
  1. Chen, H.; Martinez, J.; Kirchhoff, A.; Ng, T.D.; Schatz, B.R.: Alleviating search uncertainty through concept associations : automatic indexing, co-occurence analysis, and parallel computing (1998) 0.00
    0.0031803926 = product of:
      0.022262746 = sum of:
        0.022262746 = product of:
          0.055656865 = sum of:
            0.02197135 = weight(_text_:retrieval in 5202) [ClassicSimilarity], result of:
              0.02197135 = score(doc=5202,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 5202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5202)
            0.033685513 = weight(_text_:system in 5202) [ClassicSimilarity], result of:
              0.033685513 = score(doc=5202,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.29527056 = fieldWeight in 5202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5202)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    In this article, we report research on an algorithmic approach to alleviating search uncertainty in a large information space. Grounded on object filtering, automatic indexing, and co-occurence analysis, we performed a large-scale experiment using a parallel supercomputer (SGI Power Challenge) to analyze 400.000+ abstracts in an INSPEC computer engineering collection. Two system-generated thesauri, one based on a combined object filtering and automatic indexing method, and the other based on automatic indexing only, were compaed with the human-generated INSPEC subject thesaurus. Our user evaluation revealed that the system-generated thesauri were better than the INSPEC thesaurus in 'concept recall', but in 'concept precision' the 3 thesauri were comparable. Our analysis also revealed that the terms suggested by the 3 thesauri were complementary and could be used to significantly increase 'variety' in search terms the thereby reduce search uncertainty
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  2. Chen, H.; Ng, T.D.; Martinez, J.; Schatz, B.R.: ¬A concept space approach to addressing the vocabulary problem in scientific information retrieval : an experiment on the Worm Community System (1997) 0.00
    0.002946417 = product of:
      0.020624919 = sum of:
        0.020624919 = product of:
          0.051562294 = sum of:
            0.031712912 = weight(_text_:retrieval in 6492) [ClassicSimilarity], result of:
              0.031712912 = score(doc=6492,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.28943354 = fieldWeight in 6492, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6492)
            0.01984938 = weight(_text_:system in 6492) [ClassicSimilarity], result of:
              0.01984938 = score(doc=6492,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 6492, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6492)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This research presents an algorithmic approach to addressing the vocabulary problem in scientific information retrieval and information sharing, using the molecular biology domain as an example. We first present a literature review of cognitive studies related to the vocabulary problem and vocabulary-based search aids (thesauri) and then discuss techniques for building robust and domain-specific thesauri to assist in cross-domain scientific information retrieval. Using a variation of the automatic thesaurus generation techniques, which we refer to as the concept space approach, we recently conducted an experiment in the molecular biology domain in which we created a C. elegans worm thesaurus of 7.657 worm-specific terms and a Drosophila fly thesaurus of 15.626 terms. About 30% of these terms overlapped, which created vocabulary paths from one subject domain to the other. Based on a cognitve study of term association involving 4 biologists, we found that a large percentage (59,6-85,6%) of the terms suggested by the subjects were identified in the cojoined fly-worm thesaurus. However, we found only a small percentage (8,4-18,1%) of the associations suggested by the subjects in the thesaurus