Search (13 results, page 1 of 1)

  • × author_ss:"Chen, H.-H."
  • × language_ss:"e"
  1. Chen, H.-H.; Lin, W.-C.; Yang, C.; Lin, W.-H.: Translating-transliterating named entities for multilingual information access (2006) 0.00
    0.0026296957 = product of:
      0.039445434 = sum of:
        0.039445434 = sum of:
          0.011962548 = weight(_text_:information in 1080) [ClassicSimilarity], result of:
            0.011962548 = score(doc=1080,freq=6.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.23515764 = fieldWeight in 1080, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1080)
          0.027482886 = weight(_text_:22 in 1080) [ClassicSimilarity], result of:
            0.027482886 = score(doc=1080,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.2708308 = fieldWeight in 1080, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1080)
      0.06666667 = coord(1/15)
    
    Date
    4. 6.2006 19:52:22
    Footnote
    Beitrag einer special topic section on multilingual information systems
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.5, S.645-659
  2. Bian, G.-W.; Chen, H.-H.: Cross-language information access to multilingual collections on the Internet (2000) 0.00
    0.0022540248 = product of:
      0.03381037 = sum of:
        0.03381037 = sum of:
          0.010253613 = weight(_text_:information in 4436) [ClassicSimilarity], result of:
            0.010253613 = score(doc=4436,freq=6.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.20156369 = fieldWeight in 4436, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=4436)
          0.023556758 = weight(_text_:22 in 4436) [ClassicSimilarity], result of:
            0.023556758 = score(doc=4436,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 4436, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4436)
      0.06666667 = coord(1/15)
    
    Abstract
    Language barrier is the major problem that people face in searching for, retrieving, and understanding multilingual collections on the Internet. This paper deals with query translation and document translation in a Chinese-English information retrieval system called MTIR. Bilingual dictionary and monolingual corpus-based approaches are adopted to select suitable tranlated query terms. A machine transliteration algorithm is introduced to resolve proper name searching. We consider several design issues for document translation, including which material is translated, what roles the HTML tags play in translation, what the tradeoff is between the speed performance and the translation performance, and what from the translated result is presented in. About 100.000 Web pages translated in the last 4 months of 1997 are used for quantitative study of online and real-time Web page translation
    Date
    16. 2.2000 14:22:39
    Source
    Journal of the American Society for Information Science. 51(2000) no.3, S.281-296
  3. Ku, L.-W.; Ho, H.-W.; Chen, H.-H.: Opinion mining and relationship discovery using CopeOpi opinion analysis system (2009) 0.00
    0.0017738222 = product of:
      0.026607333 = sum of:
        0.026607333 = sum of:
          0.0069766995 = weight(_text_:information in 2938) [ClassicSimilarity], result of:
            0.0069766995 = score(doc=2938,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.13714671 = fieldWeight in 2938, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2938)
          0.019630633 = weight(_text_:22 in 2938) [ClassicSimilarity], result of:
            0.019630633 = score(doc=2938,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 2938, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2938)
      0.06666667 = coord(1/15)
    
    Abstract
    We present CopeOpi, an opinion-analysis system, which extracts from the Web opinions about specific targets, summarizes the polarity and strength of these opinions, and tracks opinion variations over time. Objects that yield similar opinion tendencies over a certain time period may be correlated due to the latent causal events. CopeOpi discovers relationships among objects based on their opinion-tracking plots and collocations. Event bursts are detected from the tracking plots, and the strength of opinion relationships is determined by the coverage of these plots. To evaluate opinion mining, we use the NTCIR corpus annotated with opinion information at sentence and document levels. CopeOpi achieves sentence- and document-level f-measures of 62% and 74%. For relationship discovery, we collected 1.3M economics-related documents from 93 Web sources over 22 months, and analyzed collocation-based, opinion-based, and hybrid models. We consider as correlated company pairs that demonstrate similar stock-price variations, and selected these as the gold standard for evaluation. Results show that opinion-based and collocation-based models complement each other, and that integrated models perform the best. The top 25, 50, and 100 pairs discovered achieve precision rates of 1, 0.92, and 0.79, respectively.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1486-1503
  4. Ku, L.-W.; Chen, H.-H.: Mining opinions from the Web : beyond relevance retrieval (2007) 0.00
    4.3507366E-4 = product of:
      0.0065261046 = sum of:
        0.0065261046 = product of:
          0.013052209 = sum of:
            0.013052209 = weight(_text_:information in 605) [ClassicSimilarity], result of:
              0.013052209 = score(doc=605,freq=14.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.256578 = fieldWeight in 605, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=605)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Documents discussing public affairs, common themes, interesting products, and so on, are reported and distributed on the Web. Positive and negative opinions embedded in documents are useful references and feedbacks for governments to improve their services, for companies to market their products, and for customers to purchase their objects. Web opinion mining aims to extract, summarize, and track various aspects of subjective information on the Web. Mining subjective information enables traditional information retrieval (IR) systems to retrieve more data from human viewpoints and provide information with finer granularity. Opinion extraction identifies opinion holders, extracts the relevant opinion sentences, and decides their polarities. Opinion summarization recognizes the major events embedded in documents and summarizes the supportive and the nonsupportive evidence. Opinion tracking captures subjective information from various genres and monitors the developments of opinions from spatial and temporal dimensions. To demonstrate and evaluate the proposed opinion mining algorithms, news and bloggers' articles are adopted. Documents in the evaluation corpora are tagged in different granularities from words, sentences to documents. In the experiments, positive and negative sentiment words and their weights are mined on the basis of Chinese word structures. The f-measure is 73.18% and 63.75% for verbs and nouns, respectively. Utilizing the sentiment words mined together with topical words, we achieve f-measure 62.16% at the sentence level and 74.37% at the document level.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1838-1850
  5. Liu, J.S.; Chen, H.-H.; Ho, M.H.-C.; Li, Y.-C.: Citations with different levels of relevancy : tracing the main paths of legal opinions (2014) 0.00
    4.0279995E-4 = product of:
      0.006041999 = sum of:
        0.006041999 = product of:
          0.012083998 = sum of:
            0.012083998 = weight(_text_:information in 1546) [ClassicSimilarity], result of:
              0.012083998 = score(doc=1546,freq=12.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23754507 = fieldWeight in 1546, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1546)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This study explores the effect from considering citation relevancy in the main path analysis. Traditional citation-based analyses treat all citations equally even though there can be various reasons and different levels of relevancy for one document to reference another. Taking the relevancy level into consideration is intuitively advantageous because it adopts more accurate information and will thus make the results of a citation-based analysis more trustworthy. This is nevertheless a challenging task. We are aware of no citation-based analysis that has taken the relevancy level into consideration. The difficulty lies in the fact that the existing patent or patent citation database provides no readily available relevancy level information. We overcome this issue by obtaining citation relevancy information from a legal database that has relevancy level ranked by legal experts. This paper selects trademark dilution, a legal concept that has been the subject of many lawsuit cases, as the target for exploration. We apply main path analysis, taking citation relevancy into consideration, and verify the results against a set of test cases that are mentioned in an authoritative trademark book. The findings show that relevancy information helps main path analysis uncover legal cases of higher importance. Nevertheless, in terms of the number of significant cases retrieved, relevancy information does not seem to make a noticeable difference.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.12, S.2479-2488
  6. Lin, W.-C.; Chang, Y.-C.; Chen, H.-H.: Integrating textual and visual information for cross-language image retrieval : a trans-media dictionary approach (2007) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 904) [ClassicSimilarity], result of:
              0.011839852 = score(doc=904,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 904, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=904)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This paper explores the integration of textual and visual information for cross-language image retrieval. An approach which automatically transforms textual queries into visual representations is proposed. First, we mine the relationships between text and images and employ the mined relationships to construct visual queries from textual ones. Then, the retrieval results of textual and visual queries are combined. To evaluate the proposed approach, we conduct English monolingual and Chinese-English cross-language retrieval experiments. The selection of suitable textual query terms to construct visual queries is the major issue. Experimental results show that the proposed approach improves retrieval performance, and use of nouns is appropriate to generate visual queries.
    Footnote
    Beitrag in: Special issue on AIRS2005: Information Retrieval Research in Asia
    Source
    Information processing and management. 43(2007) no.2, S.488-502
  7. Tsai, M.-.F.; Chen, H.-H.; Wang, Y.-T.: Learning a merge model for multilingual information retrieval (2011) 0.00
    3.6770437E-4 = product of:
      0.005515565 = sum of:
        0.005515565 = product of:
          0.01103113 = sum of:
            0.01103113 = weight(_text_:information in 2750) [ClassicSimilarity], result of:
              0.01103113 = score(doc=2750,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.21684799 = fieldWeight in 2750, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2750)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This paper proposes a learning approach for the merging process in multilingual information retrieval (MLIR). To conduct the learning approach, we present a number of features that may influence the MLIR merging process. These features are mainly extracted from three levels: query, document, and translation. After the feature extraction, we then use the FRank ranking algorithm to construct a merge model. To the best of our knowledge, this practice is the first attempt to use a learning-based ranking algorithm to construct a merge model for MLIR merging. In our experiments, three test collections for the task of crosslingual information retrieval (CLIR) in NTCIR3, 4, and 5 are employed to assess the performance of our proposed method. Moreover, several merging methods are also carried out for a comparison, including traditional merging methods, the 2-step merging strategy, and the merging method based on logistic regression. The experimental results show that our proposed method can significantly improve merging quality on two different types of datasets. In addition to the effectiveness, through the merge model generated by FRank, our method can further identify key factors that influence the merging process. This information might provide us more insight and understanding into MLIR merging.
    Source
    Information processing and management. 47(2011) no.5, S.635-646
  8. Lee, Y.-Y.; Ke, H.; Yen, T.-Y.; Huang, H.-H.; Chen, H.-H.: Combining and learning word embedding with WordNet for semantic relatedness and similarity measurement (2020) 0.00
    3.4178712E-4 = product of:
      0.0051268064 = sum of:
        0.0051268064 = product of:
          0.010253613 = sum of:
            0.010253613 = weight(_text_:information in 5871) [ClassicSimilarity], result of:
              0.010253613 = score(doc=5871,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.20156369 = fieldWeight in 5871, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5871)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In this research, we propose 3 different approaches to measure the semantic relatedness between 2 words: (i) boost the performance of GloVe word embedding model via removing or transforming abnormal dimensions; (ii) linearly combine the information extracted from WordNet and word embeddings; and (iii) utilize word embedding and 12 linguistic information extracted from WordNet as features for Support Vector Regression. We conducted our experiments on 8 benchmark data sets, and computed Spearman correlations between the outputs of our methods and the ground truth. We report our results together with 3 state-of-the-art approaches. The experimental results show that our method can outperform state-of-the-art approaches in all the selected English benchmark data sets.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.6, S.657-670
  9. Huang, H.-H.; Wang, J.-J.; Chen, H.-H.: Implicit opinion analysis : extraction and polarity labelling (2017) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 3820) [ClassicSimilarity], result of:
              0.009767379 = score(doc=3820,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 3820, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3820)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Opinion words are crucial information for sentiment analysis. In some text, however, opinion words are absent or highly ambiguous. The resulting implicit opinions are more difficult to extract and label than explicit ones. In this paper, cutting-edge machine-learning approaches - deep neural network and word-embedding - are adopted for implicit opinion mining at the snippet and clause levels. Hotel reviews written in Chinese are collected and annotated as the experimental data set. Results show the convolutional neural network models not only outperform traditional support vector machine models, but also capture hidden knowledge within the raw text. The strength of word-embedding is also analyzed.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.9, S.2076-2087
  10. Chen, H.-H.; Kuo, J.-J.; Huang, S.-J.; Lin, C.-J.; Wung, H.-C.: ¬A summarization system for Chinese news from multiple sources (2003) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 2115) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=2115,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 2115, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2115)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This article proposes a summarization system for multiple documents. It employs not only named entities and other signatures to cluster news from different sources, but also employs punctuation marks, linking elements, and topic chains to identify the meaningful units (MUs). Using nouns and verbs to identify the similar MUs, focusing and browsing models are applied to represent the summarization results. To reduce information loss during summarization, informative words in a document are introduced. For the evaluation, a question answering system (QA system) is proposed to substitute the human assessors. In large-scale experiments containing 140 questions to 17,877 documents, the results show that those models using informative words outperform pure heuristic voting-only strategy by news reporters. This model can be easily further applied to summarize multilingual news from multiple sources.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.13, S.1224-1236
  11. Hsu, M.-H.; Chen, H.-H.: Efficient and effective prediction of social tags to enhance Web search (2011) 0.00
    2.3255666E-4 = product of:
      0.0034883497 = sum of:
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 4625) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=4625,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 4625, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4625)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    As the web has grown into an integral part of daily life, social annotation has become a popular manner for web users to manage resources. This method of management has many potential applications, but it is limited in applicability by the cold-start problem, especially for new resources on the web. In this article, we study automatic tag prediction for web pages comprehensively and utilize the predicted tags to improve search performance. First, we explore the stabilizing phenomenon of tag usage in a social bookmarking system. Then, we propose a two-stage tag prediction approach, which is efficient and is effective in making use of early annotations from users. In the first stage, content-based ranking, candidate tags are selected and ranked to generate an initial tag list. In the second stage, random-walk re-ranking, we adopt a random-walk model that utilizes tag co-occurrence information to re-rank the initial list. The experimental results show that our algorithm effectively proposes appropriate tags for target web pages. In addition, we present a framework to incorporate tag prediction in a general web search. The experimental results of the web search validate the hypothesis that the proposed framework significantly enhances the typical retrieval model.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1473-1487
  12. Lee, L.-H.; Chen, H.-H.: Mining search intents for collaborative cyberporn filtering (2012) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 4988) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=4988,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 4988, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4988)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.366-376
  13. Lee, L.-H.; Juan, Y.-C.; Tseng, W.-L.; Chen, H.-H.; Tseng, Y.-H.: Mining browsing behaviors for objectionable content filtering (2015) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 1818) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=1818,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 1818, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1818)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.5, S.930-942