Search (2 results, page 1 of 1)

  • × author_ss:"Crane, G."
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Mimno, D.; Crane, G.; Jones, A.: Hierarchical catalog records : implementing a FRBR catalog (2005) 0.02
    0.023354271 = product of:
      0.046708543 = sum of:
        0.046708543 = product of:
          0.093417086 = sum of:
            0.093417086 = weight(_text_:e.g in 1183) [ClassicSimilarity], result of:
              0.093417086 = score(doc=1183,freq=6.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.39933133 = fieldWeight in 1183, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1183)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    IFLA's Functional Requirements for Bibliographic Records (FRBR) lay the foundation for a new generation of cataloging systems that recognize the difference between a particular work (e.g., Moby Dick), diverse expressions of that work (e.g., translations into German, Japanese and other languages), different versions of the same basic text (e.g., the Modern Library Classics vs. Penguin editions), and particular items (a copy of Moby Dick on the shelf). Much work has gone into finding ways to infer FRBR relationships between existing catalog records and modifying catalog interfaces to display those relationships. Relatively little work, however, has gone into exploring the creation of catalog records that are inherently based on the FRBR hierarchy of works, expressions, manifestations, and items. The Perseus Digital Library has created a new catalog that implements such a system for a small collection that includes many works with multiple versions. We have used this catalog to explore some of the implications of hierarchical catalog records for searching and browsing. Current online library catalog interfaces present many problems for searching. One commonly cited failure is the inability to find and collocate all versions of a distinct intellectual work that exist in a collection and the inability to take into account known variations in titles and personal names (Yee 2005). The IFLA Functional Requirements for Bibliographic Records (FRBR) attempts to address some of these failings by introducing the concept of multiple interrelated bibliographic entities (IFLA 1998). In particular, relationships between abstract intellectual works and the various published instances of those works are divided into a four-level hierarchy of works (such as the Aeneid), expressions (Robert Fitzgerald's translation of the Aeneid), manifestations (a particular paperback edition of Robert Fitzgerald's translation of the Aeneid), and items (my copy of a particular paperback edition of Robert Fitzgerald's translation of the Aeneid). In this formulation, each level in the hierarchy "inherits" information from the preceding level. Much of the work on FRBRized catalogs so far has focused on organizing existing records that describe individual physical books. Relatively little work has gone into rethinking what information should be in catalog records, or how the records should relate to each other. It is clear, however, that a more "native" FRBR catalog would include separate records for works, expressions, manifestations, and items. In this way, all information about a work would be centralized in one record. Records for subsequent expressions of that work would add only the information specific to each expression: Samuel Butler's translation of the Iliad does not need to repeat the fact that the work was written by Homer. This approach has certain inherent advantages for collections with many versions of the same works: new publications can be cataloged more quickly, and records can be stored and updated more efficiently.
  2. Crane, G.; Jones, A.: Text, information, knowledge and the evolving record of humanity (2006) 0.02
    0.016854495 = product of:
      0.03370899 = sum of:
        0.03370899 = product of:
          0.06741798 = sum of:
            0.06741798 = weight(_text_:e.g in 1182) [ClassicSimilarity], result of:
              0.06741798 = score(doc=1182,freq=8.0), product of:
                0.23393378 = queryWeight, product of:
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.044842023 = queryNorm
                0.28819257 = fieldWeight in 1182, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.2168427 = idf(docFreq=651, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1182)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although the Alexandria Digital Library provides far richer data than the TGN (5.9 vs. 1.3 million names), its added size lowers, rather than increases, the accuracy of most geographic name identification systems for historical documents: most of the extra 4.6 million names cover low frequency entities that rarely occur in any particular corpus. The TGN is sufficiently comprehensive to provide quite enough noise: we find place names that are used over and over (there are almost one hundred Washingtons) and semantically ambiguous (e.g., is Washington a person or a place?). Comprehensive knowledge sources emphasize recall but lower precision. We need data with which to determine which "Tribune" or "John Brown" a particular passage denotes. Secondly and paradoxically, our reference works may not be comprehensive enough. Human actors come and go over time. Organizations appear and vanish. Even places can change their names or vanish. The TGN does associate the obsolete name Siam with the nation of Thailand (tgn,1000142) - but also with towns named Siam in Iowa (tgn,2035651), Tennessee (tgn,2101519), and Ohio (tgn,2662003). Prussia appears but as a general region (tgn,7016786), with no indication when or if it was a sovereign nation. And if places do point to the same object over time, that object may have very different significance over time: in the foundational works of Western historiography, Herodotus reminds us that the great cities of the past may be small today, and the small cities of today great tomorrow (Hdt. 1.5), while Thucydides stresses that we cannot estimate the past significance of a place by its appearance today (Thuc. 1.10). In other words, we need to know the population figures for the various Washingtons in 1870 if we are analyzing documents from 1870. The foundations have been laid for reference works that provide machine actionable information about entities at particular times in history. The Alexandria Digital Library Gazetteer Content Standard8 represents a sophisticated framework with which to create such resources: places can be associated with temporal information about their foundation (e.g., Washington, DC, founded on 16 July 1790), changes in names for the same location (e.g., Saint Petersburg to Leningrad and back again), population figures at various times and similar historically contingent data. But if we have the software and the data structures, we do not yet have substantial amounts of historical content such as plentiful digital gazetteers, encyclopedias, lexica, grammars and other reference works to illustrate many periods and, even if we do, those resources may not be in a useful form: raw OCR output of a complex lexicon or gazetteer may have so many errors and have captured so little of the underlying structure that the digital resource is useless as a knowledge base. Put another way, human beings are still much better at reading and interpreting the contents of page images than machines. While people, places, and dates are probably the most important core entities, we will find a growing set of objects that we need to identify and track across collections, and each of these categories of objects will require its own knowledge sources. The following section enumerates and briefly describes some existing categories of documents that we need to mine for knowledge. This brief survey focuses on the format of print sources (e.g., highly structured textual "database" vs. unstructured text) to illustrate some of the challenges involved in converting our published knowledge into semantically annotated, machine actionable form.