Search (3 results, page 1 of 1)

  • × author_ss:"Das, S."
  • × type_ss:"a"
  • × year_i:[2020 TO 2030}
  1. Das, S.; Bagchi, M.; Hussey, P.: How to teach domain ontology-based knowledge graph construction? : an Irish experiment (2023) 0.01
    0.008572424 = product of:
      0.034289695 = sum of:
        0.034289695 = product of:
          0.05143454 = sum of:
            0.022378203 = weight(_text_:systems in 1126) [ClassicSimilarity], result of:
              0.022378203 = score(doc=1126,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 1126, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1126)
            0.029056335 = weight(_text_:22 in 1126) [ClassicSimilarity], result of:
              0.029056335 = score(doc=1126,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19345059 = fieldWeight in 1126, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1126)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Domains represent concepts which belong to specific parts of the world. The particularized meaning of words linguistically encoding such domain concepts are provided by domain specific resources. The explicit meaning of such words are increasingly captured computationally using domain-specific ontologies, which, even for the same reference domain, are most often than not semantically incompatible. As information systems that rely on domain ontologies expand, there is a growing need to not only design domain ontologies and domain ontology-grounded Knowl­edge Graphs (KGs) but also to align them to general standards and conventions for interoperability. This often presents an insurmountable challenge to domain experts who have to additionally learn the construction of domain ontologies and KGs. Until now, several research methodologies have been proposed by different research groups using different technical approaches and based on scenarios of different domains of application. However, no methodology has been proposed which not only facilitates designing conceptually well-founded ontologies, but is also, equally, grounded in the general pedagogical principles of knowl­edge organization and, thereby, flexible enough to teach, and reproduce vis-à-vis domain experts. The purpose of this paper is to provide such a general, pedagogically flexible semantic knowl­edge modelling methodology. We exemplify the methodology by examples and illustrations from a professional-level digital healthcare course, and conclude with an evaluation grounded in technological parameters as well as user experience design principles.
    Date
    20.11.2023 17:19:22
  2. Das, S.; Paik, J.H.: Gender tagging of named entities using retrieval-assisted multi-context aggregation : an unsupervised approach (2023) 0.00
    0.0029056333 = product of:
      0.011622533 = sum of:
        0.011622533 = product of:
          0.0348676 = sum of:
            0.0348676 = weight(_text_:22 in 941) [ClassicSimilarity], result of:
              0.0348676 = score(doc=941,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23214069 = fieldWeight in 941, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=941)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    22. 3.2023 12:00:14
  3. Das, S.; Naskar, D.; Roy, S.: Reorganizing educational institutional domain using faceted ontological principles (2022) 0.00
    0.0021098373 = product of:
      0.008439349 = sum of:
        0.008439349 = product of:
          0.025318045 = sum of:
            0.025318045 = weight(_text_:systems in 1098) [ClassicSimilarity], result of:
              0.025318045 = score(doc=1098,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19207339 = fieldWeight in 1098, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1098)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this work is to find out how different library classification systems and linguistic ontologies arrange a particular domain of interest and what are the limitations for information retrieval. We use knowledge representation techniques and languages for construction of a domain specific ontology. This ontology would help not only in problem solving, but it would demonstrate the ease with which complex queries can be handled using principles of domain ontology, thereby facilitating better information retrieval. Facet-based methodology has been used for ontology formalization for quite some time. Ontology formalization involves different steps such as, Identification of the terminology, Analysis, Synthesis, Standardization and Ordering. Firstly, for purposes of conceptualization OntoUML has been used which is a well-founded and established language for Ontology driven Conceptual Modelling. Phase transformation of "the same mode" has been subsequently obtained by OWL-DL using Protégé software. The final OWL ontology contains a total of around 232 axioms. These axioms comprise 148 logical axioms, 76 declaration axioms and 43 classes. These axioms glue together classes, properties and data types as well as a constraint. Such data clustering cannot be achieved through general use of simple classification schemes. Hence it has been observed and established that domain ontology using faceted principles provide better information retrieval with enhanced precision. This ontology should be seen not only as an alternative of the existing classification system but as a Knowledge Base (KB) system which can handle complex queries well, which is the ultimate purpose of any classification system or indexing system. In this paper, we try to understand how ontology-based information retrieval systems can prove its utility as a useful tool in the field of library science with a particular focus on the education domain.