Search (2 results, page 1 of 1)

  • × author_ss:"Davies, J."
  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  1. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.06
    0.057521436 = product of:
      0.07669525 = sum of:
        0.04162173 = weight(_text_:description in 4409) [ClassicSimilarity], result of:
          0.04162173 = score(doc=4409,freq=2.0), product of:
            0.23150103 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.04979191 = queryNorm
            0.17979069 = fieldWeight in 4409, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
        0.024013536 = weight(_text_:26 in 4409) [ClassicSimilarity], result of:
          0.024013536 = score(doc=4409,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.13656367 = fieldWeight in 4409, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
        0.011059988 = product of:
          0.022119977 = sum of:
            0.022119977 = weight(_text_:access in 4409) [ClassicSimilarity], result of:
              0.022119977 = score(doc=4409,freq=2.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.13106886 = fieldWeight in 4409, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    In this chapter, we describe the OntoShare system which facilitates and encourages the sharing of information between communities of practice within (or perhaps across) organizations and which encourages people - who may not previously have known of each other's existence in a large organization - to make contact where there are mutual concerns or interests. As users contribute information to the community, a knowledge resource annotated with meta-data is created. Ontologies defined using the resource description framework (RDF) and RDF Schema (RDFS) are used in this process. RDF is a W3C recommendation for the formulation of meta-data for WWW resources. RDF(S) extends this standard with the means to specify domain vocabulary and object structures - that is, concepts and the relationships that hold between them. In the next section, we describe in detail the way in which OntoShare can be used to share and retrieve knowledge and how that knowledge is represented in an RDF-based ontology. We then proceed to discuss in Section 10.3 how the ontologies in OntoShare evolve over time based on user interaction with the system and motivate our approach to user-based creation of RDF-annotated information resources. The way in which OntoShare can help to locate expertise within an organization is then described, followed by a discussion of the sociotechnical issues of deploying such a tool. Finally, a planned evaluation exercise and avenues for further research are outlined.
    Date
    26. 3.2011 11:55:03
  2. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.02
    0.020042013 = product of:
      0.040084027 = sum of:
        0.02744404 = weight(_text_:26 in 4406) [ClassicSimilarity], result of:
          0.02744404 = score(doc=4406,freq=2.0), product of:
            0.17584132 = queryWeight, product of:
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.04979191 = queryNorm
            0.15607277 = fieldWeight in 4406, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5315237 = idf(docFreq=3516, maxDocs=44218)
              0.03125 = fieldNorm(doc=4406)
        0.012639986 = product of:
          0.025279973 = sum of:
            0.025279973 = weight(_text_:access in 4406) [ClassicSimilarity], result of:
              0.025279973 = score(doc=4406,freq=2.0), product of:
                0.16876608 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.04979191 = queryNorm
                0.14979297 = fieldWeight in 4406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4406)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Important information is often scattered across Web and/or intranet resources. Traditional search engines return ranked retrieval lists that offer little or no information on the semantic relationships among documents. Knowledge workers spend a substantial amount of their time browsing and reading to find out how documents are related to one another and where each falls into the overall structure of the problem domain. Yet only when knowledge workers begin to locate the similarities and differences among pieces of information do they move into an essential part of their work: building relationships to create new knowledge. Information retrieval traditionally focuses on the relationship between a given query (or user profile) and the information store. On the other hand, exploitation of interrelationships between selected pieces of information (which can be facilitated by the use of ontologies) can put otherwise isolated information into a meaningful context. The implicit structures so revealed help users use and manage information more efficiently. Knowledge management tools are needed that integrate the resources dispersed across Web resources into a coherent corpus of interrelated information. Previous research in information integration has largely focused on integrating heterogeneous databases and knowledge bases, which represent information in a highly structured way, often by means of formal languages. In contrast, the Web consists to a large extent of unstructured or semi-structured natural language texts. As we have seen, ontologies offer an alternative way to cope with heterogeneous representations of Web resources. The domain model implicit in an ontology can be taken as a unifying structure for giving information a common representation and semantics. Once such a unifying structure exists, it can be exploited to improve browsing and retrieval performance in information access tools. QuizRDF is an example of such a tool.
    Date
    26. 3.2011 11:28:15