Search (9 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.01
    0.0149503 = product of:
      0.0299006 = sum of:
        0.0299006 = product of:
          0.1196024 = sum of:
            0.1196024 = weight(_text_:authors in 4444) [ClassicSimilarity], result of:
              0.1196024 = score(doc=4444,freq=8.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.50368255 = fieldWeight in 4444, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4444)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
  2. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.01
    0.01268575 = product of:
      0.0253715 = sum of:
        0.0253715 = product of:
          0.101486 = sum of:
            0.101486 = weight(_text_:authors in 274) [ClassicSimilarity], result of:
              0.101486 = score(doc=274,freq=4.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.42738882 = fieldWeight in 274, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=274)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    This study explores the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks. Cosine distance is chosen to measure the similarities among the six networks. The authors found that topical networks and coauthorship networks have the lowest similarity; cocitation networks and citation networks have high similarity; bibliographic coupling networks and cocitation networks have high similarity; and coword networks and topical networks have high similarity. In addition, through multidimensional scaling, two dimensions can be identified among the six networks: Dimension 1 can be interpreted as citation-based versus noncitation-based, and Dimension 2 can be interpreted as social versus cognitive. The authors recommend the use of hybrid or heterogeneous networks to study research interaction and scholarly communications.
  3. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.01
    0.01268575 = product of:
      0.0253715 = sum of:
        0.0253715 = product of:
          0.101486 = sum of:
            0.101486 = weight(_text_:authors in 1202) [ClassicSimilarity], result of:
              0.101486 = score(doc=1202,freq=4.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.42738882 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  4. Zhang, C.; Bu, Y.; Ding, Y.; Xu, J.: Understanding scientific collaboration : homophily, transitivity, and preferential attachment (2018) 0.01
    0.01268575 = product of:
      0.0253715 = sum of:
        0.0253715 = product of:
          0.101486 = sum of:
            0.101486 = weight(_text_:authors in 4011) [ClassicSimilarity], result of:
              0.101486 = score(doc=4011,freq=4.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.42738882 = fieldWeight in 4011, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Scientific collaboration is essential in solving problems and breeding innovation. Coauthor network analysis has been utilized to study scholars' collaborations for a long time, but these studies have not simultaneously taken different collaboration features into consideration. In this paper, we present a systematic approach to analyze the differences in possibilities that two authors will cooperate as seen from the effects of homophily, transitivity, and preferential attachment. Exponential random graph models (ERGMs) are applied in this research. We find that different types of publications one author has written play diverse roles in his/her collaborations. An author's tendency to form new collaborations with her/his coauthors' collaborators is strong, where the more coauthors one author had before, the more new collaborators he/she will attract. We demonstrate that considering the authors' attributes and homophily effects as well as the transitivity and preferential attachment effects of the coauthorship network in which they are embedded helps us gain a comprehensive understanding of scientific collaboration.
  5. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.01
    0.012349921 = product of:
      0.024699843 = sum of:
        0.024699843 = product of:
          0.049399685 = sum of:
            0.049399685 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.049399685 = score(doc=4188,freq=2.0), product of:
                0.18240054 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05208721 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 13:02:21
  6. Yan, E.; Ding, Y.: Weighted citation : an indicator of an article's prestige (2010) 0.01
    0.011960239 = product of:
      0.023920478 = sum of:
        0.023920478 = product of:
          0.09568191 = sum of:
            0.09568191 = weight(_text_:authors in 3705) [ClassicSimilarity], result of:
              0.09568191 = score(doc=3705,freq=2.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.40294603 = fieldWeight in 3705, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3705)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    The authors propose using the technique of weighted citation to measure an article's prestige. The technique allocates a different weight to each reference by taking into account the impact of citing journals and citation time intervals. Weightedcitation captures prestige, whereas citation counts capture popularity. They compare the value variances for popularity and prestige for articles published in the Journal of the American Society for Information Science and Technology from 1998 to 2007, and find that the majority have comparable status.
  7. Bu, Y.; Ding, Y.; Xu, J.; Liang, X.; Gao, G.; Zhao, Y.: Understanding success through the diversity of collaborators and the milestone of career (2018) 0.01
    0.010571458 = product of:
      0.021142917 = sum of:
        0.021142917 = product of:
          0.08457167 = sum of:
            0.08457167 = weight(_text_:authors in 4012) [ClassicSimilarity], result of:
              0.08457167 = score(doc=4012,freq=4.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.35615736 = fieldWeight in 4012, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4012)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Scientific collaboration is vital to many fields, and it is common to see scholars seek out experienced researchers or experts in a domain with whom they can share knowledge, experience, and resources. To explore the diversity of research collaborations, this article performs a temporal analysis on the scientific careers of researchers in the field of computer science. Specifically, we analyze collaborators using 2 indicators: the research topic diversity, measured by the Author-Conference-Topic model and cosine, and the impact diversity, measured by the normalized standard deviation of h-indices. We find that the collaborators of high-impact researchers tend to study diverse research topics and have diverse h-indices. Moreover, by setting PhD graduation as an important milestone in researchers' careers, we examine several indicators related to scientific collaboration and their effects on a career. The results show that collaborating with authoritative authors plays an important role prior to a researcher's PhD graduation, but working with non-authoritative authors carries more weight after PhD graduation.
  8. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.01
    0.00897018 = product of:
      0.01794036 = sum of:
        0.01794036 = product of:
          0.07176144 = sum of:
            0.07176144 = weight(_text_:authors in 686) [ClassicSimilarity], result of:
              0.07176144 = score(doc=686,freq=2.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.30220953 = fieldWeight in 686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
  9. Sugimoto, C.R.; Li, D.; Russell, T.G.; Finlay, S.C.; Ding, Y.: ¬The shifting sands of disciplinary development : analyzing North American Library and Information Science dissertations using latent Dirichlet allocation (2011) 0.01
    0.00747515 = product of:
      0.0149503 = sum of:
        0.0149503 = product of:
          0.0598012 = sum of:
            0.0598012 = weight(_text_:authors in 4143) [ClassicSimilarity], result of:
              0.0598012 = score(doc=4143,freq=2.0), product of:
                0.2374559 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.05208721 = queryNorm
                0.25184128 = fieldWeight in 4143, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4143)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    This work identifies changes in dominant topics in library and information science (LIS) over time, by analyzing the 3,121 doctoral dissertations completed between 1930 and 2009 at North American Library and Information Science programs. The authors utilize latent Dirichlet allocation (LDA) to identify latent topics diachronically and to identify representative dissertations of those topics. The findings indicate that the main topics in LIS have changed substantially from those in the initial period (1930-1969) to the present (2000-2009). However, some themes occurred in multiple periods, representing core areas of the field: library history occurred in the first two periods; citation analysis in the second and third periods; and information-seeking behavior in the fourth and last period. Two topics occurred in three of the five periods: information retrieval and information use. One of the notable changes in the topics was the diminishing use of the word library (and related terms). This has implications for the provision of doctoral education in LIS. This work is compared to other earlier analyses and provides validation for the use of LDA in topic analysis of a discipline.