Search (3 results, page 1 of 1)

  • × author_ss:"Doerr, M."
  1. Doerr, M.: ¬The CIDOC CRM, an ontological approach to schema heterogeneity (2005) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 1662) [ClassicSimilarity], result of:
              0.020761002 = score(doc=1662,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 1662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1662)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The creation of the World Wide Web has had a profound impact an the ease with which information can be distributed and presented. Now with more and more information becoming available, there is an increasing demand for targeted global search, comparative studies, data transfer and data migration between heterogeneous sources of cultural and scholarly contents. This requires interoperability not only at the encoding level - a task solved well by XML for instance - but also at the more complex semantics level, where lie the characteristics of the domain. In the meanwhile, the reality of semantic interoperability is getting frustrating. In the cultural area alone, dozens of "standard" and hundreds of proprietary metadata and data structures exist, as well as hundreds of terminology systems. Core systems like the Dublin Core represent a common denominator by far too small to fulfil advanced requirements. Overstretching its already limited semantics in order to capture complex contents leads to further loss of meaning.
  2. Doerr, M.; Gradmann, S.; Hennicke, S.; Isaac, A.; Meghini, C.; Van de Sompel, H.: ¬The Europeana Data Model (EDM) (2010) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 3967) [ClassicSimilarity], result of:
              0.020761002 = score(doc=3967,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 3967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3967)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The Europeana Data Model (EDM) is a new approach towards structuring and representing data delivered to Europeana by the various contributing cultural heritage institutions. The model aims at greater expressivity and flexibility in comparison to the current Europeana Semantic Elements (ESE), which it is destined to replace. The design principles underlying the EDM are based on the core principles and best practices of the Semantic Web and Linked Data efforts to which Europeana wants to contribute. The model itself builds upon established standards like RDF(S), OAI-ORE, SKOS, and Dublin Core. It acts as a common top-level ontology which retains original data models and information perspectives while at the same time enabling interoperability. The paper elaborates on the aforementioned aspects and the design principles which drove the development of the EDM.
  3. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 5787) [ClassicSimilarity], result of:
              0.017300837 = score(doc=5787,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 5787, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5787)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.