Search (33 results, page 2 of 2)

  • × author_ss:"Egghe, L."
  • × year_i:[2000 TO 2010}
  1. Egghe, L.: Relations between the continuous and the discrete Lotka power function (2005) 0.00
    2.585618E-4 = product of:
      0.0046541123 = sum of:
        0.0046541123 = weight(_text_:in in 3464) [ClassicSimilarity], result of:
          0.0046541123 = score(doc=3464,freq=6.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.1561842 = fieldWeight in 3464, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
      0.055555556 = coord(1/18)
    
    Abstract
    The discrete Lotka power function describes the number of sources (e.g., authors) with n = 1, 2, 3, ... items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
  2. Egghe, L.; Ravichandra Rao, I.K.: ¬The influence of the broadness of a query of a topic on its h-index : models and examples of the h-index of n-grams (2008) 0.00
    2.488012E-4 = product of:
      0.0044784215 = sum of:
        0.0044784215 = weight(_text_:in in 2009) [ClassicSimilarity], result of:
          0.0044784215 = score(doc=2009,freq=8.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.15028831 = fieldWeight in 2009, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2009)
      0.055555556 = coord(1/18)
    
    Abstract
    The article studies the influence of the query formulation of a topic on its h-index. In order to generate pure random sets of documents, we used N-grams (N variable) to measure this influence: strings of zeros, truncated at the end. The used databases are WoS and Scopus. The formula h=T**1/alpha, proved in Egghe and Rousseau (2006) where T is the number of retrieved documents and is Lotka's exponent, is confirmed being a concavely increasing function of T. We also give a formula for the relation between h and N the length of the N-gram: h=D10**(-N/alpha) where D is a constant, a convexly decreasing function, which is found in our experiments. Nonlinear regression on h=T**1/alpha gives an estimation of , which can then be used to estimate the h-index of the entire database (Web of Science [WoS] and Scopus): h=S**1/alpha, , where S is the total number of documents in the database.
  3. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.00
    2.4630062E-4 = product of:
      0.004433411 = sum of:
        0.004433411 = weight(_text_:in in 1965) [ClassicSimilarity], result of:
          0.004433411 = score(doc=1965,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.14877784 = fieldWeight in 1965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1965)
      0.055555556 = coord(1/18)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.
  4. Egghe, L.; Rousseau, R.: Aging, obsolescence, impact, growth, and utilization : definitions and relations (2000) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 5154) [ClassicSimilarity], result of:
          0.003800067 = score(doc=5154,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 5154, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
      0.055555556 = coord(1/18)
    
    Abstract
    The notions aging, obsolescence, impact, growth, utilization, and their relations are studied. It is shown how to correct an observed citation distribution for growth, once the growth distribution is known. The relation of this correction procedure with the calculation of impact measures is explained. More interestingly, we have shown how the influence of growth on aging can be studied over a complete period as a whole. Here, the difference between the so-called average and global aging distributions is the main factor. Our main result is that growth can influence aging but that it does not cause aging. A short overview of some classical articles on this topic is given. Results of these earlier works are placed in the framework set up in this article
  5. Egghe, L.; Ravichandra Rao, I.K.: Duality revisited : construction of fractional frequency distributions based on two dual Lotka laws (2002) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 1006) [ClassicSimilarity], result of:
          0.003800067 = score(doc=1006,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 1006, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1006)
      0.055555556 = coord(1/18)
    
    Abstract
    Fractional frequency distributions of, for example, authors with a certain (fractional) number of papers are very irregular and, therefore, not easy to model or to explain. This article gives a first attempt to this by assuming two simple Lotka laws (with exponent 2): one for the number of authors with n papers (total count here) and one for the number of papers with n authors, n E N. Based an an earlier made convolution model of Egghe, interpreted and reworked now for discrete scores, we are able to produce theoretical fractional frequency distributions with only one parameter, which are in very close agreement with the practical ones as found in a large dataset produced earlier by Rao. The article also shows that (irregular) fractional frequency distributions are a consequence of Lotka's law, and are not examples of breakdowns of this famous historical law.
  6. Egghe, L.: Zipfian and Lotkaian continuous concentration theory (2005) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 3678) [ClassicSimilarity], result of:
          0.003800067 = score(doc=3678,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 3678, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
      0.055555556 = coord(1/18)
    
    Abstract
    In this article concentration (i.e., inequality) aspects of the functions of Zipf and of Lotka are studied. Since both functions are power laws (i.e., they are mathematically the same) it suffices to develop one concentration theory for power laws and apply it twice for the different interpretations of the laws of Zipf and Lotka. After a brief repetition of the functional relationships between Zipf's law and Lotka's law, we prove that Price's law of concentration is equivalent with Zipf's law. A major part of this article is devoted to the development of continuous concentration theory, based an Lorenz curves. The Lorenz curve for power functions is calculated and, based an this, some important concentration measures such as the ones of Gini, Theil, and the variation coefficient. Using Lorenz curves, it is shown that the concentration of a power law increases with its exponent and this result is interpreted in terms of the functions of Zipf and Lotka.
  7. Egghe, L.; Ravichandra Rao, I.K.: Study of different h-indices for groups of authors (2008) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 1878) [ClassicSimilarity], result of:
          0.003800067 = score(doc=1878,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 1878, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1878)
      0.055555556 = coord(1/18)
    
    Abstract
    In this article, for any group of authors, we define three different h-indices. First, there is the successive h-index h2 based on the ranked list of authors and their h-indices h1 as defined by Schubert (2007). Next, there is the h-index hP based on the ranked list of authors and their number of publications. Finally, there is the h-index hC based on the ranked list of authors and their number of citations. We present formulae for these three indices in Lotkaian informetrics from which it also follows that h2 < hp < hc. We give a concrete example of a group of 167 authors on the topic optical flow estimation. Besides these three h-indices, we also calculate the two-by-two Spearman rank correlation coefficient and prove that these rankings are significantly related.
  8. Egghe, L.: ¬A model for the size-frequency function of coauthor pairs (2008) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 2366) [ClassicSimilarity], result of:
          0.003800067 = score(doc=2366,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 2366, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2366)
      0.055555556 = coord(1/18)
    
    Abstract
    Lotka's law was formulated to describe the number of authors with a certain number of publications. Empirical results (Morris & Goldstein, 2007) indicate that Lotka's law is also valid if one counts the number of publications of coauthor pairs. This article gives a simple model proving this to be true, with the same Lotka exponent, if the number of coauthored papers is proportional to the number of papers of the individual coauthors. Under the assumption that this number of coauthored papers is more than proportional to the number of papers of the individual authors (to be explained in the article), we can prove that the size-frequency function of coauthor pairs is Lotkaian with an exponent that is higher than that of the Lotka function of individual authors, a fact that is confirmed in experimental results.
  9. Egghe, L.: New relations between similarity measures for vectors based on vector norms (2009) 0.00
    2.1111484E-4 = product of:
      0.003800067 = sum of:
        0.003800067 = weight(_text_:in in 2708) [ClassicSimilarity], result of:
          0.003800067 = score(doc=2708,freq=4.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.12752387 = fieldWeight in 2708, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2708)
      0.055555556 = coord(1/18)
    
    Abstract
    The well-known similarity measures Jaccard, Salton's cosine, Dice, and several related overlap measures for vectors are compared. While general relations are not possible to prove, we study these measures on the trajectories of the form [X]=a[Y], where a > 0 is a constant and [·] denotes the Euclidean norm of a vector. In this case, direct functional relations between these measures are proved. For Jaccard, we prove that it is a convexly increasing function of Salton's cosine measure, but always smaller than or equal to the latter, hereby explaining a curve, experimentally found by Leydesdorff. All the other measures have a linear relation with Salton's cosine, reducing even to equality, in case a = 1. Hence, for equally normed vectors (e.g., for normalized vectors) we, essentially, only have Jaccard's measure and Salton's cosine measure since all the other measures are equal to the latter.
  10. Egghe, L.; Rousseau, R.: ¬The influence of publication delays on the observed aging distribution of scientific literature (2000) 0.00
    1.9904094E-4 = product of:
      0.003582737 = sum of:
        0.003582737 = weight(_text_:in in 4385) [ClassicSimilarity], result of:
          0.003582737 = score(doc=4385,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.120230645 = fieldWeight in 4385, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4385)
      0.055555556 = coord(1/18)
    
    Abstract
    Observed aging curves are influenced by publication delays. In this article, we show how the 'undisturbed' aging function and the publication delay combine to give the observed aging function. This combination is performed by a mathematical operation known as convolution. Examples are given, such as the convolution of 2 Poisson distributions, 2 exponential distributions, a 2 lognormal distributions. A paradox is observed between theory and real data
  11. Egghe, L.: Vector retrieval, fuzzy retrieval and the universal fuzzy IR surface for IR evaluation (2004) 0.00
    1.7416083E-4 = product of:
      0.0031348949 = sum of:
        0.0031348949 = weight(_text_:in in 2531) [ClassicSimilarity], result of:
          0.0031348949 = score(doc=2531,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.10520181 = fieldWeight in 2531, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2531)
      0.055555556 = coord(1/18)
    
    Abstract
    It is shown that vector information retrieval (IR) and general fuzzy IR uses two types of fuzzy set operations: the original "Zadeh min-max operations" and the so-called "probabilistic sum and algebraic product operations". The universal IR surface, valid for classical 0-1 IR (i.e. where ordinary sets are used) and used in IR evaluation, is extended to and reproved for vector IR, using the probabilistic sum and algebraic product model. We also show (by counterexample) that, using the "Zadeh min-max" fuzzy model, yields a breakdown of this IR surface.
  12. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.00
    1.4928072E-4 = product of:
      0.0026870528 = sum of:
        0.0026870528 = weight(_text_:in in 4384) [ClassicSimilarity], result of:
          0.0026870528 = score(doc=4384,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.09017298 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.055555556 = coord(1/18)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  13. Egghe, L.: Mathematical study of h-index sequences (2009) 0.00
    1.244006E-4 = product of:
      0.0022392108 = sum of:
        0.0022392108 = weight(_text_:in in 4217) [ClassicSimilarity], result of:
          0.0022392108 = score(doc=4217,freq=2.0), product of:
            0.029798867 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021906832 = queryNorm
            0.07514416 = fieldWeight in 4217, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4217)
      0.055555556 = coord(1/18)
    
    Abstract
    This paper studies mathematical properties of h-index sequences as developed by Liang [Liang, L. (2006). h-Index sequence and h-index matrix: Constructions and applications. Scientometrics, 69(1), 153-159]. For practical reasons, Liming studies such sequences where the time goes backwards while it is more logical to use the time going forward (real career periods). Both type of h-index sequences are studied here and their interrelations are revealed. We show cases where these sequences are convex, linear and concave. We also show that, when one of the sequences is convex then the other one is concave, showing that the reverse-time sequence, in general, cannot be used to derive similar properties of the (difficult to obtain) forward time sequence. We show that both sequences are the same if and only if the author produces the same number of papers per year. If the author produces an increasing number of papers per year, then Liang's h-sequences are above the "normal" ones. All these results are also valid for g- and R-sequences. The results are confirmed by the h-, g- and R-sequences (forward and reverse time) of the author.