Search (7 results, page 1 of 1)

  • × author_ss:"Frieder, O."
  • × language_ss:"e"
  • × year_i:[2000 TO 2010}
  1. Aqeel, S.U.; Beitzel, S.M.; Jensen, E.C.; Grossman, D.; Frieder, O.: On the development of name search techniques for Arabic (2006) 0.00
    0.0022540248 = product of:
      0.03381037 = sum of:
        0.03381037 = sum of:
          0.010253613 = weight(_text_:information in 5289) [ClassicSimilarity], result of:
            0.010253613 = score(doc=5289,freq=6.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.20156369 = fieldWeight in 5289, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=5289)
          0.023556758 = weight(_text_:22 in 5289) [ClassicSimilarity], result of:
            0.023556758 = score(doc=5289,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 5289, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5289)
      0.06666667 = coord(1/15)
    
    Abstract
    The need for effective identity matching systems has led to extensive research in the area of name search. For the most part, such work has been limited to English and other Latin-based languages. Consequently, algorithms such as Soundex and n-gram matching are of limited utility for languages such as Arabic, which has vastly different morphologic features that rely heavily on phonetic information. The dearth of work in this field is partly caused by the lack of standardized test data. Consequently, we have built a collection of 7,939 Arabic names, along with 50 training queries and 111 test queries. We use this collection to evaluate a variety of algorithms, including a derivative of Soundex tailored to Arabic (ASOUNDEX), measuring effectiveness by using standard information retrieval measures. Our results show an improvement of 70% over existing approaches.
    Date
    22. 7.2006 17:20:20
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.728-739
  2. Grossman, D.A.; Frieder, O.: Information retrieval : algorithms and heuristics (2004) 0.00
    0.002097669 = product of:
      0.015732517 = sum of:
        0.008896776 = weight(_text_:und in 1486) [ClassicSimilarity], result of:
          0.008896776 = score(doc=1486,freq=4.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.13852294 = fieldWeight in 1486, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=1486)
        0.006835742 = product of:
          0.013671484 = sum of:
            0.013671484 = weight(_text_:information in 1486) [ClassicSimilarity], result of:
              0.013671484 = score(doc=1486,freq=24.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2687516 = fieldWeight in 1486, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1486)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Interested in how an efficient search engine works? Want to know what algorithms are used to rank resulting documents in response to user requests? The authors answer these and other key information on retrieval design and implementation questions is provided. This book is not yet another high level text. Instead, algorithms are thoroughly described, making this book ideally suited for both computer science students and practitioners who work on search-related applications. As stated in the foreword, this book provides a current, broad, and detailed overview of the field and is the only one that does so. Examples are used throughout to illustrate the algorithms. The authors explain how a query is ranked against a document collection using either a single or a combination of retrieval strategies, and how an assortment of utilities are integrated into the query processing scheme to improve these rankings. Methods for building and compressing text indexes, querying and retrieving documents in multiple languages, and using parallel or distributed processing to expedite the search are likewise described. This edition is a major expansion of the one published in 1998. Neuaufl. 2005: Besides updating the entire book with current techniques, it includes new sections on language models, cross-language information retrieval, peer-to-peer processing, XML search, mediators, and duplicate document detection.
    Classification
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    LCSH
    Information storage and retrieval systems
    RSWK
    Algorithmus / Heuristik / Information Retrieval
    Information Retrieval / Theoretische Informatik (HBZ)
    Information Retrieval (BVB)
    RVK
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    Series
    Kluwer international series on information retrieval ; 15
    Subject
    Algorithmus / Heuristik / Information Retrieval
    Information Retrieval / Theoretische Informatik (HBZ)
    Information Retrieval (BVB)
    Information storage and retrieval systems
  3. Urbain, J.; Goharian, N.; Frieder, O.: Probabilistic passage models for semantic search of genomics literature (2008) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 2380) [ClassicSimilarity], result of:
              0.008544678 = score(doc=2380,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 2380, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2380)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    We explore unsupervised learning techniques for extracting semantic information about biomedical concepts and topics, and introduce a passage retrieval model for using these semantics in context to improve genomics literature search. Our contributions include a new passage retrieval model based on an undirected graphical model (Markov Random Fields), and new methods for modeling passage-concepts, document-topics, and passage-terms as potential functions within the model. Each potential function includes distributional evidence to disambiguate topics, concepts, and terms in context. The joint distribution across potential functions in the graph represents the probability of a passage being relevant to a biologist's information need. Relevance ranking within each potential function simplifies normalization across potential functions and eliminates the need for tuning of passage retrieval model parameters. Our dimensional indexing model facilitates efficient aggregation of topic, concept, and term distributions. The proposed passage-retrieval model improves search results in the presence of varying levels of semantic evidence, outperforming models of query terms, concepts, or document topics alone. Our results exceed the state-of-the-art for automatic document retrieval by 14.46% (0.3554 vs. 0.3105) and passage retrieval by 15.57% (0.1128 vs. 0.0976) as assessed by the TREC 2007 Genomics Track, and automatic document retrieval by 18.56% (0.3424 vs. 0.2888) as assessed by the TREC 2005 Genomics Track. Automatic document retrieval results for TREC 2007 and TREC 2005 are statistically significant at the 95% confidence level (p = .0359 and .0253, respectively). Passage retrieval is significant at the 90% confidence level (p = 0.0893).
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.12, S.2008-2023
  4. Yee, W.G.; Nguyen, L.T; Frieder, O.: ¬A view of the data on P2P file-sharing systems (2009) 0.00
    2.6310782E-4 = product of:
      0.0039466172 = sum of:
        0.0039466172 = product of:
          0.0078932345 = sum of:
            0.0078932345 = weight(_text_:information in 3118) [ClassicSimilarity], result of:
              0.0078932345 = score(doc=3118,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1551638 = fieldWeight in 3118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3118)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.10, S.2132-2141
  5. Aljlayl, M.; Frieder, O.; Grossman, D.: On bidirectional English-Arabic search (2002) 0.00
    2.3255666E-4 = product of:
      0.0034883497 = sum of:
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 5227) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=5227,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 5227, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5227)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Aljlayl, Frieder, and Grossman review machine translation of query methodologies and apply them to English-Arabic/Arabic-English Cross-Language Information Retrieval. In the dictionary method, replacement of each term with all possible equivalents in the target language results in considerable ambiguity, while taking the first term in the dictionary list reduces the ambiguity but may fail to capture the meaning. A Two-Phase method takes all possible equivalents and translates them back, retaining only those that generate the original term. It results in an average query length of six terms in TREC7 and 12 in TREC9. Arabic to English translations consistently preformed below the original English queries, and the Two-Phase method consistently preformed at the highest level and significantly better than the Every-Match method. Machine translation using other techniques is economical for queries but not likely so for documents. Using ALKAFI, a commercial translation system from Arabic to English and the Al-Mutarjim Al-Arabey system for English to Arabic, nearly 60% of monolingual retrievals were generated going from Arabic to English. Smaller numbers of terms in the source query improve performance, and these systems require syntactically well-formed queries for good performance.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.13, S.1139-1151
  6. Beitzel, S.M.; Jensen, E.C.; Chowdhury, A.; Frieder, O.; Grossman, D.: Temporal analysis of a very large topically categorized Web query log (2007) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 60) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=60,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 60, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=60)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.2, S.166-178
  7. Cathey, R.J.; Jensen, E.C.; Beitzel, S.M.; Frieder, O.; Grossman, D.: Exploiting parallelism to support scalable hierarchical clustering (2007) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 448) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=448,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 448, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=448)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.8, S.1207-1221