Search (4 results, page 1 of 1)

  • × author_ss:"Gödert, W."
  • × language_ss:"e"
  • × year_i:[1990 TO 2000}
  1. Gödert, W.: Information as a cognitive construction : a communication-theoretic model and consequences for information systems (1996) 0.00
    9.19731E-4 = product of:
      0.003678924 = sum of:
        0.003678924 = product of:
          0.011036771 = sum of:
            0.011036771 = weight(_text_:a in 6032) [ClassicSimilarity], result of:
              0.011036771 = score(doc=6032,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19940455 = fieldWeight in 6032, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6032)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    In this paper a model for understanding the concept of information is presented and how the processes of externalization and perception of information by human beings could be understood. This model is different from the standard information theoretic model. It combines the understanding of cognitive information processing as an act of information generation from sense impressions with communication theoretic considerations. This approach can be of value for any system that is regarded as a knowledge system with an in-built ordering structure. As an application some consequences will be drawn for the design of information systems which claims to handle information itself (e.g. multimedia information systems) instead of giving references to bibliographic entities
    Type
    a
  2. Gödert, W.: Facet classification in online retrieval (1991) 0.00
    8.309842E-4 = product of:
      0.0033239368 = sum of:
        0.0033239368 = product of:
          0.0099718105 = sum of:
            0.0099718105 = weight(_text_:a in 5825) [ClassicSimilarity], result of:
              0.0099718105 = score(doc=5825,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.18016359 = fieldWeight in 5825, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5825)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The study of faceted classification systems has primarily been directed towards application for precombined catalogues or bibliographies, not so much for use in post coordinated retrieval systems. Argues that faceted classification systems in some respects are superior to other techniques of on-line retrieval as far as facet and concept analysis is combined with an expressive notational system in order to guide a form of retrieval which will use Boolean operators (for combining the facets regardless of one special citation order) and truncation for retrieving hierarchically different sets of documents. This point of view is demonstrated by 2 examples. The 1st one uses a short classification system derived from B. Buchanan and the 2nd is built upon the classification system used by Library and Information Science Abstracts (LISA). Further discussion is concerned with some possible consequences which could be derived from a retrieval with PRECIS strings
    "Online retrieval" conjures up a very different mental image now than in 1991, the year this article was written, and the year Tim Berners-Lee first revealed the new hypertext system he called the World Wide Web. Gödert shows that truncation and Boolean logic, combined with notation from a faceted classification system, will be a powerful way of searching for information. It undoubtedly is, but no system built now would require a user searching for material on "nervous systems of bone fish" to enter "Fdd$ and Leaa$". This is worth reading for someone interested in seeing how searching and facets can go together, but the web has made this article quite out of date.
    Type
    a
  3. Gödert, W.; Horny, S.: ¬The design of subject access elements in Online Public Access Catalogs (1990) 0.00
    7.051135E-4 = product of:
      0.002820454 = sum of:
        0.002820454 = product of:
          0.008461362 = sum of:
            0.008461362 = weight(_text_:a in 5830) [ClassicSimilarity], result of:
              0.008461362 = score(doc=5830,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 5830, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5830)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Experiences with retrieval in OPACs suggest that there are major problems for the users of such systems, such as choosing the 'correct' subject access vocabulary, narrowing or broadening the set of items retrieved regarding the search interest. Such problems relate to two facts: (1) that in the early OPACs subject access has not been considered seriously enough and (2) that the complexity of the topic has not been really recognized. Using a typology of users' questions it is demonstrated which requirements musts be met by a successful online subject access. Improvements of subject access tools are primarily aimed at, pinpointing the interplay between the different subcomponents of any subject facility: a) the features of the indexing languages used; b) the indexing principles used; c) the design and structuring of the database; and d) the possibilities of the technical retrieval facility, the search mode, and query languages. The contribution summarizes the manifold interactions between the four subcomponents listed. Any successful retrieval will heavily depend on the design of these components considering their interactions.
    Type
    a
  4. Gödert, W.: ¬The design of subject access elements in online catalogues : Some problems (1991) 0.00
    4.700756E-4 = product of:
      0.0018803024 = sum of:
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 5140) [ClassicSimilarity], result of:
              0.005640907 = score(doc=5140,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 5140, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5140)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Type
    a