Search (2 results, page 1 of 1)

  • × author_ss:"Ganter, B."
  • × theme_ss:"Formale Begriffsanalyse"
  • × year_i:[2000 TO 2010}
  1. Ganter, B.: Begriffe und Implikationen (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4195) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4195,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4195, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4195)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  2. Ganter, B.: Computing with conceptual structures (2000) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 5088) [ClassicSimilarity], result of:
              0.009076704 = score(doc=5088,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 5088, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5088)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We give an overview over the computational tools for conceptional structures that have emerged from the theory of Formal Concept Analysis, with emphasis on basic ideas rather than technical details. We describe what we mean by conceptual computations, and try to convince the reader that an elaborate formalization is a necessary precondition. Claiming that Formal Concept Analysis provides such a formal background, we present as examples two well known algorithms in very simple pseudo code. These earl be used for navigating in a lattice, thereby supporting some prototypical tasks of conceptual computation. We refer to some of the many more advanced methods, discuss how to compute with limited precision and explain why in the case of incomplete knowledge the conceptual approach is more efficient than a combinatorial one. Utilizing this efficiency requires skillful use of the formalism. We present two results that lead in this direction
    Type
    a

Languages