Search (10 results, page 1 of 1)

  • × author_ss:"Gnoli, C."
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.08
    0.07840709 = product of:
      0.104542784 = sum of:
        0.041137107 = weight(_text_:web in 3739) [ClassicSimilarity], result of:
          0.041137107 = score(doc=3739,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 3739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.046659768 = weight(_text_:search in 3739) [ClassicSimilarity], result of:
          0.046659768 = score(doc=3739,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 3739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.03349182 = score(doc=3739,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  2. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.04
    0.038043402 = product of:
      0.076086804 = sum of:
        0.055991717 = weight(_text_:search in 4144) [ClassicSimilarity], result of:
          0.055991717 = score(doc=4144,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3258447 = fieldWeight in 4144, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4144)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.04019018 = score(doc=4144,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Exploring collections by their subject matter is an important functionality for library users. We developed an online tool called SciGator in order to allow users to browse the Dewey Decimal Classification (DDC) classes used in different libraries at the University of Pavia and to perform different types of search in the OPAC. Besides navigation of DDC hierarchies, SciGator suggests "see-also" relationships with related classes and maps equivalent classes in local shelving schemes, thus allowing the expansion of search queries to include subjects contiguous to the initial one. We are developing new features, including the possibility to expand searches even more to national and international catalogues.
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  3. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.03
    0.03170284 = product of:
      0.06340568 = sum of:
        0.046659768 = weight(_text_:search in 3698) [ClassicSimilarity], result of:
          0.046659768 = score(doc=3698,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 3698, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.03349182 = score(doc=3698,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Although bibliographic classifications usually adopt a perspective different from that of object classifications, the two have obvious relationships. These become especially relevant when users are looking for knowledge scattered in a wide variety of forms and media. This is an increasingly common situation, as library catalogues now coexist in the global digital environment with catalogues of archives, of museums, of commercial products, and many other information resources. In order to make the subject content of all these resources searchable, a broader conception of classification is needed, that can be applied to an knowledge item, rather than only bibliographic materials. To illustrate this we take an example of the research on bagpipes in Northern Italian folklore. For this kind of research, the most effective search strategy is a cross-media one, looking for many different knowledge sources such as published documents, police archives, painting details, museum specimens, organizations devoted to related subjects. To provide satisfying results for this kind of search, the traditional disciplinary approach to classification is not sufficient. Tools are needed in which knowledge items dealing with a phenomenon of interest can be retrieved independently from the other topics with which it is combined, the disciplinary context, and the medium where it occurs. This can be made possible if the basic units of classification are taken to be the phenomena treated, as recommended in the León Manifesto, rather than disciplines or other aspect features. The concept of bagpipes should be retrievable and browsable in any combination with other phenomena, disciplines, media etc. Examples are given of information sources that could be managed by this freely-faceted technique of classification.
    Date
    22. 7.2010 20:40:08
  4. Gnoli, C.: Notation (2018) 0.01
    0.00989803 = product of:
      0.03959212 = sum of:
        0.03959212 = weight(_text_:search in 4650) [ClassicSimilarity], result of:
          0.03959212 = score(doc=4650,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 4650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4650)
      0.25 = coord(1/4)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
  5. Gnoli, C.; Pusterla, L.; Bendiscioli, A.; Recinella, C.: Classification for collections mapping and query expansion (2016) 0.01
    0.008726497 = product of:
      0.03490599 = sum of:
        0.03490599 = weight(_text_:web in 3102) [ClassicSimilarity], result of:
          0.03490599 = score(doc=3102,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 3102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3102)
      0.25 = coord(1/4)
    
    Abstract
    Dewey Decimal Classification has been used to organize materials owned by the three scientific libraries at the University of Pavia, and to allow integrated browsing in their union catalogue through SciGator, a home built web-based user interface. Classification acts as a bridge between collections located in different places and shelved according to different local schemes. Furthermore, cross-discipline relationships recorded in the system allow for expanded queries that increase recall. Advantages and possible improvements of such a system are discussed.
  6. Gnoli, C.: Classifying phenomena : Part 1: dimensions (2016) 0.01
    0.008248359 = product of:
      0.032993436 = sum of:
        0.032993436 = weight(_text_:search in 3417) [ClassicSimilarity], result of:
          0.032993436 = score(doc=3417,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 3417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3417)
      0.25 = coord(1/4)
    
    Abstract
    This is the first part of a study on the classification of phenomena. It starts by addressing the status of classification schemes among knowledge organization systems (KOSs), as some features of them have been overlooked in recent reviews of KOS types. It then considers the different dimensions implied in a KOS, which include: the observed phenomena, the cultural and disciplinary perspective under which they are treated, the features of documents carrying such treatment, the collections of such documents as managed in libraries, archives or museums, the information needs prompting to search and use these collections and the people experiencing such different information needs. Until now, most library classification schemes have given priority to the perspective dimension as they first list disciplines. However, an increasing number of voices are now considering the possibility of classification schemes giving priority to phenomena as advocated in the León Manifesto. Although these schemes first list phenomena as their main classes, they can as well express perspective or the other relevant dimensions that occur in a classified item. The independence of a phenomenon-based classification from the institutional divisions into disciplines contributes to giving knowledge organization a more proactive and influential role.
  7. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.01
    0.0072720814 = product of:
      0.029088326 = sum of:
        0.029088326 = weight(_text_:web in 4825) [ClassicSimilarity], result of:
          0.029088326 = score(doc=4825,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 4825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4825)
      0.25 = coord(1/4)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
  8. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.01
    0.0072720814 = product of:
      0.029088326 = sum of:
        0.029088326 = weight(_text_:web in 323) [ClassicSimilarity], result of:
          0.029088326 = score(doc=323,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
      0.25 = coord(1/4)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
  9. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.04019018 = score(doc=1414,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.04019018 = score(doc=4152,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17. 2.2018 18:22:25