Search (41 results, page 2 of 3)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: ISKO News (2007) 0.00
    0.0029003182 = product of:
      0.0106345 = sum of:
        0.004532476 = product of:
          0.009064952 = sum of:
            0.009064952 = weight(_text_:h in 1092) [ClassicSimilarity], result of:
              0.009064952 = score(doc=1092,freq=2.0), product of:
                0.0660481 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.026584605 = queryNorm
                0.13724773 = fieldWeight in 1092, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1092)
          0.5 = coord(1/2)
        0.0043660053 = weight(_text_:a in 1092) [ClassicSimilarity], result of:
          0.0043660053 = score(doc=1092,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14243183 = fieldWeight in 1092, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1092)
        0.0017360178 = weight(_text_:s in 1092) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1092,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1092)
      0.27272728 = coord(3/11)
    
    Abstract
    Bericht über: Levels of Reality, Seminar, Bolzano (Bozen) Italy, 26-28 September 2007: Ontologies, the knowledge organization systems now widely used in knowledge management applications, take their name from a branch of philosophy. Philosophical ontology deals with the kinds and the properties of what exists, and with how they can be described by categories like entity, attribute, or process. Readers familiar with facet analysis will notice some analogy with the "fundamental categories" of faceted classifications, and this resemblance is not accidental. Indeed, knowledge organization systems use conceptual structures that can be variously reconnected with the categories of ontology. Though having more practical purposes, the ontologies and classifications of information science can benefit of those of philosophy.
    Darin: "However, John Sowa (Vivomind, USA) argued in his speech that the formalized approach, already undertaken by the pioneering project Cyc now having run for 23 years, is not the best way to analyze complex systems. People don't really use axioms in their cognitive processes (even mathematicians first get an idea intuitively, then work on axioms and proofs only at the moment of writing papers). To map between different ontologies, the Vivomind Analogy Engine throws axioms out, and searches instead for analogies in their structures. Analogy is a pragmatic human faculty using a combination of the three logical procedures of deduction, induction, and abduction. Guarino comments that people can communicate without need of axioms as they share a common context, but in order to teach computers how to operate, the requirements are different: he would not trust an airport control system working by analogy."
    Editor
    Albrechtsen, H.
    Source
    Knowledge organization. 34(2007) no.3, S.169-171
    Type
    a
  2. Gnoli, C.: Classificazione a facette (2004) 0.00
    0.0018778095 = product of:
      0.010327952 = sum of:
        0.005467103 = weight(_text_:a in 3746) [ClassicSimilarity], result of:
          0.005467103 = score(doc=3746,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.17835285 = fieldWeight in 3746, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3746)
        0.0048608496 = weight(_text_:s in 3746) [ClassicSimilarity], result of:
          0.0048608496 = score(doc=3746,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.16817348 = fieldWeight in 3746, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.109375 = fieldNorm(doc=3746)
      0.18181819 = coord(2/11)
    
    Pages
    44 S
  3. Gnoli, C.: Facets: a fruitful notion in many domains (2008) 0.00
    0.0017751341 = product of:
      0.009763237 = sum of:
        0.0069856085 = weight(_text_:a in 49) [ClassicSimilarity], result of:
          0.0069856085 = score(doc=49,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.22789092 = fieldWeight in 49, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=49)
        0.0027776284 = weight(_text_:s in 49) [ClassicSimilarity], result of:
          0.0027776284 = score(doc=49,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.09609913 = fieldWeight in 49, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=49)
      0.18181819 = coord(2/11)
    
    Abstract
    This special issue of ''Axiomathes'' is devoted to a technique originally developed within library science: facet analysis. During discussions with Roberto Poli, it was realized that facet analysis shares interesting features with analytical methods in several other fields, including philosophy, psychology, linguistics, and computer science. For these reasons, in an interdisciplinary spirit, we believe that facet analysis is a relevant topic for the scope of this journal. It is hoped that readers will be persuaded by this after examining the present contributions.
    Content
    Einführungsbeitrag zu einem Themenheft: "Facets: a fruitful notion in many domains".
    Source
    Axiomathes. 18(2008) no.2, S.127-130
    Type
    a
  4. Gnoli, C.: Categories and facets in integrative levels (2008) 0.00
    0.0016567915 = product of:
      0.009112353 = sum of:
        0.0070291325 = weight(_text_:a in 1806) [ClassicSimilarity], result of:
          0.0070291325 = score(doc=1806,freq=18.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.22931081 = fieldWeight in 1806, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
        0.0020832212 = weight(_text_:s in 1806) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=1806,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.18181819 = coord(2/11)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
    Content
    Beitrag eines Themenheftes "Facets: a fruitful notion in many domains".
    Source
    Axiomathes. 18(2008) no.2, S.177-192
    Type
    a
  5. Gnoli, C.: Classifying phenomena : Part 2: Types and levels (2017) 0.00
    0.0015791605 = product of:
      0.008685382 = sum of:
        0.0057392623 = weight(_text_:a in 3177) [ClassicSimilarity], result of:
          0.0057392623 = score(doc=3177,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18723148 = fieldWeight in 3177, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3177)
        0.00294612 = weight(_text_:s in 3177) [ClassicSimilarity], result of:
          0.00294612 = score(doc=3177,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.101928525 = fieldWeight in 3177, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3177)
      0.18181819 = coord(2/11)
    
    Abstract
    After making the case that phenomena can be the primary unit of classification (Part 1), some basic principles to group and sort phenomena are considered. Entities can be grouped together on the basis of both their similarity (morphology) and their common origin (phylogeny). The resulting groups will form the classical hierarchical chains of types and subtypes. At every hierarchical degree, phenomena can form ordered sets (arrays), where their sorting can reflect levels of increasing organization, corresponding to an evolutionary order of appearance (emergence). The theory of levels of reality has been investigated by many philosophers and applied to knowledge organization systems by various authors, which are briefly reviewed. At the broadest degree, it allows to identify some major strata of phenomena (forms, matter, life, minds, societies and culture) in turn divided into layers. A list of twenty-six layers is proposed to form the main classes of the Integrative Levels Classification system. A combination of morphology and phylogeny can determine whether a given phenomenon should be a type of an existing level, or a level on its own.
    Footnote
    Part 1 in: Knowledge organization. 43(2016) no.6, S.403-415.
    Source
    Knowledge organization. 44(2017) no.1, S.37-54
    Type
    a
  6. Gnoli, C.: Phylogenetic classification (2006) 0.00
    0.0015058789 = product of:
      0.008282334 = sum of:
        0.0061991126 = weight(_text_:a in 164) [ClassicSimilarity], result of:
          0.0061991126 = score(doc=164,freq=14.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.20223314 = fieldWeight in 164, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=164)
        0.0020832212 = weight(_text_:s in 164) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=164,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 164, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=164)
      0.18181819 = coord(2/11)
    
    Abstract
    One general principle in the construction of classification schemes is that of grouping phenomena to be classified according to their shared origin in evolution or history (phylogenesis). In general schemes, this idea has been applied by several classificationists in identifying a series of integrative levels, each originated from the previous ones, and using them as the main classes. In special schemes, common origin is a key principle in many domains: examples are given from the classification of climates, of organisms, and of musical instruments. Experience from these domains, however, suggests that using common origin alone, as done in cladistic taxonomy, can produce weird results, like having birds as a subclass of reptiles; while the most satisfying classifications use a well balanced mix of common origin and similarity. It is discussed how this could be applied to the development of a general classification of phenomena in an emergentist perspective, and how the resulting classification tree could be structured. Charles Bennett's notion of logical depth appears to be a promising conceptual tool for this purpose.
    Source
    Knowledge organization. 33(2006) no.3, S.138-152
    Type
    a
  7. Gnoli, C.: Faceted classifications as linked data : a logical analysis (2021) 0.00
    0.0014222699 = product of:
      0.007822484 = sum of:
        0.0057392623 = weight(_text_:a in 452) [ClassicSimilarity], result of:
          0.0057392623 = score(doc=452,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.18723148 = fieldWeight in 452, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=452)
        0.0020832212 = weight(_text_:s in 452) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=452,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 452, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=452)
      0.18181819 = coord(2/11)
    
    Abstract
    Faceted knowledge organization systems have sophisticated logical structures, making their representation as linked data a demanding task. The term facet is often used in ambiguous ways: while in thesauri facets only work as semantic categories, in classification schemes they also have syntactic functions. The need to convert the Integrative Levels Classification (ILC) into SKOS stimulated a more general analysis of the different kinds of syntactic facets, as can be represented in terms of RDF properties and their respective domain and range. A nomenclature is proposed, distinguishing between common facets, which can be appended to any class, that is, have an unrestricted domain; and special facets, which are exclusive to some class, that is, have a restricted domain. In both cases, foci can be taken from any other class (unrestricted range: free facets), or only from subclasses of an existing class (parallel facets), or be defined specifically for the present class (bound facets). Examples are given of such cases in ILC and in the Dewey Decimal Classification (DDC).
    Source
    Knowledge organization. 48(2021) no.3, S.213-218
    Type
    a
  8. Gnoli, C.: Animals belonging to the emperor : enabling viewpoint warrant in classification (2011) 0.00
    0.0013412925 = product of:
      0.0073771086 = sum of:
        0.0039050733 = weight(_text_:a in 1803) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=1803,freq=2.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 1803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=1803)
        0.0034720355 = weight(_text_:s in 1803) [ClassicSimilarity], result of:
          0.0034720355 = score(doc=1803,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.120123915 = fieldWeight in 1803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.078125 = fieldNorm(doc=1803)
      0.18181819 = coord(2/11)
    
    Pages
    S.91-100
    Type
    a
  9. Gnoli, C.: Notation (2018) 0.00
    0.0013313505 = product of:
      0.007322428 = sum of:
        0.0052392064 = weight(_text_:a in 4650) [ClassicSimilarity], result of:
          0.0052392064 = score(doc=4650,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1709182 = fieldWeight in 4650, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4650)
        0.0020832212 = weight(_text_:s in 4650) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=4650,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 4650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=4650)
      0.18181819 = coord(2/11)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
    Source
    Knowledge organization. 45(2018) no.8, S.667-684
    Type
    a
  10. Gnoli, C.: Classifying phenomena : Part 1: dimensions (2016) 0.00
    0.0013159672 = product of:
      0.007237819 = sum of:
        0.004782719 = weight(_text_:a in 3417) [ClassicSimilarity], result of:
          0.004782719 = score(doc=3417,freq=12.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15602624 = fieldWeight in 3417, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3417)
        0.0024550997 = weight(_text_:s in 3417) [ClassicSimilarity], result of:
          0.0024550997 = score(doc=3417,freq=4.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.08494043 = fieldWeight in 3417, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3417)
      0.18181819 = coord(2/11)
    
    Abstract
    This is the first part of a study on the classification of phenomena. It starts by addressing the status of classification schemes among knowledge organization systems (KOSs), as some features of them have been overlooked in recent reviews of KOS types. It then considers the different dimensions implied in a KOS, which include: the observed phenomena, the cultural and disciplinary perspective under which they are treated, the features of documents carrying such treatment, the collections of such documents as managed in libraries, archives or museums, the information needs prompting to search and use these collections and the people experiencing such different information needs. Until now, most library classification schemes have given priority to the perspective dimension as they first list disciplines. However, an increasing number of voices are now considering the possibility of classification schemes giving priority to phenomena as advocated in the León Manifesto. Although these schemes first list phenomena as their main classes, they can as well express perspective or the other relevant dimensions that occur in a classified item. The independence of a phenomenon-based classification from the institutional divisions into disciplines contributes to giving knowledge organization a more proactive and influential role.
    Footnote
    Part 2 in: Knowledge organization. 44(2017) no.1, S.37-54.
    Source
    Knowledge organization. 43(2016) no.6, S.403-415
    Type
    a
  11. Gnoli, C.: Knowledge organization in Italy (2004) 0.00
    0.0012455588 = product of:
      0.0068505732 = sum of:
        0.0056353607 = weight(_text_:a in 3750) [ClassicSimilarity], result of:
          0.0056353607 = score(doc=3750,freq=34.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.1838419 = fieldWeight in 3750, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3750)
        0.0012152124 = weight(_text_:s in 3750) [ClassicSimilarity], result of:
          0.0012152124 = score(doc=3750,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.04204337 = fieldWeight in 3750, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3750)
      0.18181819 = coord(2/11)
    
    Abstract
    As an Italian chapter of ISKO has recently been reorganized, I was kindly invited to Write a short report an current KO activities in our country. So, in the following, I will briefly illustrate the local situation of the various kinds of knowledge organization systems, as well as related developments and activities. I am grateful to Paola Capitani, Emanuela Casson, Michele Santoro, and Lorena Zuccolo for providing useful information to be included here.
    Content
    "Subject headings Many Italian libraries create subject headings for their catalogues, using as a reference guide the "Soggettario per i catalogui delle biblioteche italiane." This is basically a list of subject terms created by the Biblioteca nazionale centrale di Firenze (BNCF), first published in 1956 and later updated with various lists of new subject headings. Though the Soggettario is still the main available reference, librarians are generally aware that it is outdated in both vocabulary and structure, especially as it does not provide explicit principles and rules to create and combine subject headings. A research group, called the Gruppo di ricerca sull'indicizzazione per soggetto (GRIS), was founded in 1990. It was devoted to improving the principles and consistency of subject indexing. Its members have performed in depth investigations of the structure of subject headings, starting with the principles of facet analysis used in PRECIS and including original developments. Results of their work are coded into the Guida all'indicizzazione per soggetto, published in 1996 and available also online <http:// wwwaib.it/aib/commiss/gris/gulda.htm>. The GRIS guide does not concern vocabulary, but morphological and syntactical rules for choosing and combining terms according to a sound citation order, based an a "role scheme." Unfortunately, GRIS principles have been applied only in a small number of libraries, mainly in Tuscany, rohere most GRIS members are located. A new project is now attempting to blend the traditional authority of the Soggettario with the more advanced principles of GRIS. A working group has been formed with people from BNCF, GRIS, and others, to study the feasibility of a renewal of the Soggettario. The group produced a report book in 2002, specifying the desirable features of the new system, and is at present searching for grants to implement it.
    Terminology and thesauri BNCF is also involved in a working group collecting information an online terminological resources <http://wwwindire.it/websemantico>. The group is headed by Paola Capitani, and has organized several roundtables an terminology in special domains, such as economy, fashion, law, and education. Thesauri are generally poorly known and used in Italy, although there are significant exceptions: among faceted systems we can mention the "Thesauro italiano di sociologia," published in 1999, and the "Thesaurus regionale toscano," as well as specialized an social sciences including a general outline, available both in print (1996) and online <http:// www regione.toscana.it/ius/ns-thesaurus/>. Classification systems The Dewey Decimal Classification (DDC) is by far the most widespread classification scheme in Italian libraries. A working group, coordinated by Luigi Crocetti, regularly translates the new editions of DDC manuals, and gives refresher courses an it for librarians. BNCF makes DDC numbers for bibliographical records both of its own catalogue, and of the national bibliography (= Bibliografia nazionale italiana: BNI), which is available for other libraries in a CD-ROM edition. A very large number of public libraries use DDC for their shelfmarks, so that users are accustomed to it. This situation is different from other European countries, e.g., Spain where UDC is widespread."
    Source
    Knowledge organization. 31(2004) no.1, S.64-66
    Type
    a
  12. Gnoli, C.: Ten long-term research questions in knowledge organization (2008) 0.00
    0.0012307836 = product of:
      0.0067693098 = sum of:
        0.0046860883 = weight(_text_:a in 2134) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=2134,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 2134, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2134)
        0.0020832212 = weight(_text_:s in 2134) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2134,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2134)
      0.18181819 = coord(2/11)
    
    Abstract
    Research can benefit by periodical consideration of its status in a long-term perspective. In knowledge organization (KO), a number of basic questions remain to be addressed in the 21st century. Ten of them are identified and synthetically discussed: (1) Can KO principles be extended to a broader scope, including hypertexts, multimedia, museum objects, and monuments? (2) Can the two basic approaches, ontological and epistemological, be reconciled? (3) Can any ontological foundation of KO be identified? (4) Should disciplines continue to be the structural base of KO? (5) How can viewpoint warrant be respected? (6) How can KO be adapted to local collection needs? (7) How can KO deal with changes in knowledge? (8) How can KO systems represent all the dimensions listed above? (9) How can software and formats be improved to better serve these needs? (10) Who should do KO: information professionals, authors or readers?
    Source
    Knowledge organization. 35(2008) nos.2/3, S.137-149
    Type
    a
  13. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    0.0011094587 = product of:
      0.006102023 = sum of:
        0.0043660053 = weight(_text_:a in 2527) [ClassicSimilarity], result of:
          0.0043660053 = score(doc=2527,freq=10.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14243183 = fieldWeight in 2527, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2527)
        0.0017360178 = weight(_text_:s in 2527) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=2527,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 2527, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2527)
      0.18181819 = coord(2/11)
    
    Abstract
    The evolution of bibliographic classification schemes, from the end of the 19th century to our time, shows a trend of increasing possibilities to combine concepts in a classmark. While the early schemes, like DDC and LCC, were largely enumerative, more and more synthetic devices have appeared with common auxiliaries, facets, and phase relationships. The last editions of UDC and the UDC-derived FATKS project follow this evolution, by introducing more specific phase relationships and more common auxiliaries, like those for general properties and processes. This agrees with the Farradane's principle that each concept should have a place of unique definition, instead of being re-notated in each context where it occurs. This evolution appears to be unfinished, as even in most synthetic schemes many concepts have a different notation according to the disciplinary main classes where they occur. To overcome this limitation, main classes should be defined in terms of phenomena rather than disciplines: the Integrative Level Classification (ILC) research project is currently exploring this possibility. Examples with UDC, FATKS, and ILC notations are discussed.
    Source
    Extensions and corrections to the UDC. 29(2007), S.167-182
    Type
    a
  14. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.00
    0.0010558002 = product of:
      0.005806901 = sum of:
        0.0044180867 = weight(_text_:a in 2659) [ClassicSimilarity], result of:
          0.0044180867 = score(doc=2659,freq=16.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.14413087 = fieldWeight in 2659, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
        0.0013888142 = weight(_text_:s in 2659) [ClassicSimilarity], result of:
          0.0013888142 = score(doc=2659,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.048049565 = fieldWeight in 2659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
      0.18181819 = coord(2/11)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
    Source
    Scire. 17(2011) no.1, S.29-34
    Type
    a
  15. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.00
    0.001025653 = product of:
      0.005641091 = sum of:
        0.0039050733 = weight(_text_:a in 323) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=323,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 323, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
        0.0017360178 = weight(_text_:s in 323) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=323,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
      0.18181819 = coord(2/11)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
    Source
    Knowledge organization. 39(2012) no.4, S.268-275
    Type
    a
  16. Gnoli, C.; Ridi, C.R.: Unified Theory of Information, hypertextuality and levels of reality : without, within, and withal knowledge management (2014) 0.00
    0.001025653 = product of:
      0.005641091 = sum of:
        0.0039050733 = weight(_text_:a in 1796) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=1796,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 1796, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1796)
        0.0017360178 = weight(_text_:s in 1796) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=1796,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 1796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1796)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose - The different senses of the term information in physical, biological and social interpretations, and the possibility of connections between them, are addressed. Special attention is paid to Hofkirchner's Unified Theory of Information (UTI), proposing an integrated view in which the notion of information gets additional properties as one moves from the physical to the biological and the social realms. The paper aims to discuss these issues. Design/methodology/approach - UTI is compared to other views of information, especially to two theories complementing several ideas of it: the theory of the hypertextual documental universe ("docuverse") and the theory of integrative levels of reality. Two alternative applications of the complex of these three theories are discussed: a pragmatical, hermeneutic one, and a more ambitious realist, ontological one. The latter can be extended until considering information ("bit") together with matter-energy ("it") as a fundamental element in the world. Problems and opportunities with each view are discussed. Findings - It is found that the common ground for all three theories is an evolutionary approach, paying attention to the phylogenetic connections between the different meanings of information. Research limitations/implications - Other theories of information, like Leontiev's, are not discussed as not especially related to the focus of the approach. Originality/value - The paper builds on previously unnoticed affinities between different families of information-related theories, showing how each of them can provide fruitful complements to the other ones in clarifying the nature of information.
    Source
    Journal of documentation. 70(2014) no.3, S.443-460
    Type
    a
  17. Binding, C.; Gnoli, C.; Tudhope, D.: Migrating a complex classification scheme to the semantic web : expressing the Integrative Levels Classification using SKOS RDF (2021) 0.00
    0.001025653 = product of:
      0.005641091 = sum of:
        0.0039050733 = weight(_text_:a in 600) [ClassicSimilarity], result of:
          0.0039050733 = score(doc=600,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.12739488 = fieldWeight in 600, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=600)
        0.0017360178 = weight(_text_:s in 600) [ClassicSimilarity], result of:
          0.0017360178 = score(doc=600,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.060061958 = fieldWeight in 600, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=600)
      0.18181819 = coord(2/11)
    
    Abstract
    Purpose The Integrative Levels Classification (ILC) is a comprehensive "freely faceted" knowledge organization system not previously expressed as SKOS (Simple Knowledge Organization System). This paper reports and reflects on work converting the ILC to SKOS representation. Design/methodology/approach The design of the ILC representation and the various steps in the conversion to SKOS are described and located within the context of previous work considering the representation of complex classification schemes in SKOS. Various issues and trade-offs emerging from the conversion are discussed. The conversion implementation employed the STELETO transformation tool. Findings The ILC conversion captures some of the ILC facet structure by a limited extension beyond the SKOS standard. SPARQL examples illustrate how this extension could be used to create faceted, compound descriptors when indexing or cataloguing. Basic query patterns are provided that might underpin search systems. Possible routes for reducing complexity are discussed. Originality/value Complex classification schemes, such as the ILC, have features which are not straight forward to represent in SKOS and which extend beyond the functionality of the SKOS standard. The ILC's facet indicators are modelled as rdf:Property sub-hierarchies that accompany the SKOS RDF statements. The ILC's top-level fundamental facet relationships are modelled by extensions of the associative relationship - specialised sub-properties of skos:related. An approach for representing faceted compound descriptions in ILC and other faceted classification schemes is proposed.
    Source
    Journal of documentation. 77(2021) no.4, S.926-945
    Type
    a
  18. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    9.812339E-4 = product of:
      0.005396786 = sum of:
        0.0033135647 = weight(_text_:a in 2663) [ClassicSimilarity], result of:
          0.0033135647 = score(doc=2663,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10809815 = fieldWeight in 2663, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
        0.0020832212 = weight(_text_:s in 2663) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=2663,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 2663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.18181819 = coord(2/11)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
    Pages
    S.263-268
    Type
    a
  19. Gnoli, C.: Workshop on Levels of reality as a KO paradigm : levels, types, facets: three structural principles for KO (2010) 0.00
    9.812339E-4 = product of:
      0.005396786 = sum of:
        0.0033135647 = weight(_text_:a in 3524) [ClassicSimilarity], result of:
          0.0033135647 = score(doc=3524,freq=4.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.10809815 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3524)
        0.0020832212 = weight(_text_:s in 3524) [ClassicSimilarity], result of:
          0.0020832212 = score(doc=3524,freq=2.0), product of:
            0.028903782 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.026584605 = queryNorm
            0.072074346 = fieldWeight in 3524, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3524)
      0.18181819 = coord(2/11)
    
    Pages
    S.129-137
    Type
    a
  20. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.00
    4.2600805E-4 = product of:
      0.0046860883 = sum of:
        0.0046860883 = weight(_text_:a in 712) [ClassicSimilarity], result of:
          0.0046860883 = score(doc=712,freq=8.0), product of:
            0.030653298 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.026584605 = queryNorm
            0.15287387 = fieldWeight in 712, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
      0.09090909 = coord(1/11)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.
    Type
    a