Search (2 results, page 1 of 1)

  • × author_ss:"Guerrero-Bote, V.P."
  1. Quirin, A.; Cordón, O.; Guerrero-Bote, V.P.; Vargas-Quesada, B.; Moya-Anegón, F.: A quick MST-based algorithm to obtain Pathfinder networks (oo, n - 1) (2008) 0.03
    0.028448759 = product of:
      0.056897517 = sum of:
        0.056897517 = product of:
          0.113795035 = sum of:
            0.113795035 = weight(_text_:n in 2371) [ClassicSimilarity], result of:
              0.113795035 = score(doc=2371,freq=12.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.58343816 = fieldWeight in 2371, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2371)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Network scaling algorithms such as the Pathfinder algorithm are used to prune many different kinds of networks, including citation networks, random networks, and social networks. However, this algorithm suffers from run time problems for large networks and online processing due to its O(n**4) time complexity. In this article, we introduce a new alternative, the MST-Pathfinder algorithm, which will allow us to prune the original network to get its PFNET(oo, n - 1) in just O(n**2 · log n) time. The underlying idea comes from the fact that the union (superposition) of all the Minimum Spanning Trees extracted from a given network is equivalent to the PFNET resulting from the Pathfinder algorithm parameterized by a specific set of values (r = oo and q = n - 1), those usually considered in many different applications. Although this property is well-known in the literature, it seems that no algorithm based on it has been proposed, up to now, to decrease the high computational cost of the original Pathfinder algorithm. We also present a mathematical proof of the correctness of this new alternative and test its good efficiency in two different case studies: one dedicated to the post-processing of large random graphs, and the other one to a real world case in which medium networks obtained by a cocitation analysis of the scientific domains in different countries are pruned.
  2. Leydesdorff, L.; Moya-Anegón, F. de; Guerrero-Bote, V.P.: Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012) (2015) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 1814) [ClassicSimilarity], result of:
              0.06569959 = score(doc=1814,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 1814, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1814)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Scopus data, we construct a global map of science based on aggregated journal-journal citations from 1996-2012 (N of journals?=?20,554). This base map enables users to overlay downloads from Scopus interactively. Using a single year (e.g., 2012), results can be compared with mappings based on the Journal Citation Reports at the Web of Science (N?=?10,936). The Scopus maps are more detailed at both the local and global levels because of their greater coverage, including, for example, the arts and humanities. The base maps can be interactively overlaid with journal distributions in sets downloaded from Scopus, for example, for the purpose of portfolio analysis. Rao-Stirling diversity can be used as a measure of interdisciplinarity in the sets under study. Maps at the global and the local level, however, can be very different because of the different levels of aggregation involved. Two journals, for example, can both belong to the humanities in the global map, but participate in different specialty structures locally. The base map and interactive tools are available online (with instructions) at http://www.leydesdorff.net/scopus_ovl.