Search (2 results, page 1 of 1)

  • × author_ss:"Guns, R."
  • × theme_ss:"Informetrie"
  • × type_ss:"a"
  1. Zuccala, A.; Guns, R.; Cornacchia, R.; Bod, R.: Can we rank scholarly book publishers? : a bibliometric experiment with the field of history (2015) 0.00
    3.149623E-4 = product of:
      0.0072441325 = sum of:
        0.0072441325 = product of:
          0.014488265 = sum of:
            0.014488265 = weight(_text_:international in 2037) [ClassicSimilarity], result of:
              0.014488265 = score(doc=2037,freq=2.0), product of:
                0.078619614 = queryWeight, product of:
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.023567878 = queryNorm
                0.18428308 = fieldWeight in 2037, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2037)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This is a publisher ranking study based on a citation data grant from Elsevier, specifically, book titles cited in Scopus history journals (2007-2011) and matching metadata from WorldCat® (i.e., OCLC numbers, ISBN codes, publisher records, and library holding counts). Using both resources, we have created a unique relational database designed to compare citation counts to books with international library holdings or libcitations for scholarly book publishers. First, we construct a ranking of the top 500 publishers and explore descriptive statistics at the level of publisher type (university, commercial, other) and country of origin. We then identify the top 50 university presses and commercial houses based on total citations and mean citations per book (CPB). In a third analysis, we present a map of directed citation links between journals and book publishers. American and British presses/publishing houses tend to dominate the work of library collection managers and citing scholars; however, a number of specialist publishers from Europe are included. Distinct clusters from the directed citation map indicate a certain degree of regionalism and subject specialization, where some journals produced in languages other than English tend to cite books published by the same parent press. Bibliometric rankings convey only a small part of how the actual structure of the publishing field has evolved; hence, challenges lie ahead for developers of new citation indices for books and bibliometricians interested in measuring book and publisher impacts.
  2. Egghe, L.; Guns, R.: Applications of the generalized law of Benford to informetric data (2012) 0.00
    2.8984674E-4 = product of:
      0.0066664745 = sum of:
        0.0066664745 = product of:
          0.013332949 = sum of:
            0.013332949 = weight(_text_:1 in 376) [ClassicSimilarity], result of:
              0.013332949 = score(doc=376,freq=4.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.23029712 = fieldWeight in 376, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=376)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    In a previous work (Egghe, 2011), the first author showed that Benford's law (describing the logarithmic distribution of the numbers 1, 2, ... , 9 as first digits of data in decimal form) is related to the classical law of Zipf with exponent 1. The work of Campanario and Coslado (2011), however, shows that Benford's law does not always fit practical data in a statistical sense. In this article, we use a generalization of Benford's law related to the general law of Zipf with exponent ? > 0. Using data from Campanario and Coslado, we apply nonlinear least squares to determine the optimal ? and show that this generalized law of Benford fits the data better than the classical law of Benford.