Search (3 results, page 1 of 1)

  • × author_ss:"Hardman, L."
  • × author_ss:"Wielemaker, J."
  1. Bogaard, T.; Hollink, L.; Wielemaker, J.; Ossenbruggen, J. van; Hardman, L.: Metadata categorization for identifying search patterns in a digital library (2019) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 5281) [ClassicSimilarity], result of:
              0.010148063 = score(doc=5281,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 5281, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5281)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose For digital libraries, it is useful to understand how users search in a collection. Investigating search patterns can help them to improve the user interface, collection management and search algorithms. However, search patterns may vary widely in different parts of a collection. The purpose of this paper is to demonstrate how to identify these search patterns within a well-curated historical newspaper collection using the existing metadata. Design/methodology/approach The authors analyzed search logs combined with metadata records describing the content of the collection, using this metadata to create subsets in the logs corresponding to different parts of the collection. Findings The study shows that faceted search is more prevalent than non-faceted search in terms of number of unique queries, time spent, clicks and downloads. Distinct search patterns are observed in different parts of the collection, corresponding to historical periods, geographical regions or subject matter. Originality/value First, this study provides deeper insights into search behavior at a fine granularity in a historical newspaper collection, by the inclusion of the metadata in the analysis. Second, it demonstrates how to use metadata categorization as a way to analyze distinct search patterns in a collection.
    Type
    a
  2. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Omelayenko, B.; Ossenbruggen, J. van; Wielemaker, J.; Wielinga, B.; Tordai, A.; Aroyoa, L.: Semantic annotation and search of cultural-heritage collections : the MultimediaN E-Culture demonstrator (2008) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4646) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4646,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4646, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we describe a SemanticWeb application for semantic annotation and search in large virtual collections of cultural-heritage objects, indexed with multiple vocabularies. During the annotation phase we harvest, enrich and align collection metadata and vocabularies. The semantic-search facilities support keyword-based queries of the graph (currently 20M triples), resulting in semantically grouped result clusters, all representing potential semantic matches of the original query. We show two sample search scenario's. The annotation and search software is open source and is already being used by third parties. All software is based on establishedWeb standards, in particular HTML/XML, CSS, RDF/OWL, SPARQL and JavaScript.
  3. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Hollink, L.; Huang, Z.; Kersen, J. van; Niet, M. de; Omelayenko, B.; Ossenbruggen, J. van; Siebes, R.; Taekema, J.; Wielemaker, J.; Wielinga, B.: MultimediaN E-Culture demonstrator (2006) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4648) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4648,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)