Search (3 results, page 1 of 1)

  • × author_ss:"Horrocks, I."
  1. Fensel, D.; Harmelen, F. van; Horrocks, I.: OIL and DAML+OIL : ontology languages for the Semantic Web (2004) 0.00
    0.0027899165 = product of:
      0.008369749 = sum of:
        0.008369749 = product of:
          0.016739499 = sum of:
            0.016739499 = weight(_text_:of in 3244) [ClassicSimilarity], result of:
              0.016739499 = score(doc=3244,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.24433708 = fieldWeight in 3244, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3244)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This chapter discusses OIL and DAML1OIL, currently the most prominent ontology languages for the Semantic Web. The chapter starts by discussing the pyramid of languages that underlie the architecture of the Semantic Web (XML, RDF, RDFS). In section 2.2, we briefly describe XML, RDF and RDFS. We then discuss in more detail OIL and DAML1OIL, the first proposals for languages at the ontology layer of the semantic pyramid. For OIL (and to some extent DAML1OIL) we discuss the general design motivations (Section 2.3), describe the constructions in the language (Section 2.4), and the various syntactic forms of these languages (Section 2.5). Section 2.6 discusses the layered architecture of the language, section 2.7 briefly mentions the formal semantics, section 2.8 discusses the transition from OIL to DAML+OIL, and section 2.9 concludes with our experience with the language to date and future development in the context of the World Wide Web Consortium (W3C). This chapter is not intended to give full and formal definitions of either the syntax or the semantics of OIL or DAML1OIL. Such definitions are already available elsewhere: http://www.ontoknowledge.org/oil/ for OIL and http://www.w3.org/submission/2001/12/ for DAML1OIL.
  2. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.00
    0.0023918552 = product of:
      0.0071755657 = sum of:
        0.0071755657 = product of:
          0.014351131 = sum of:
            0.014351131 = weight(_text_:of in 4684) [ClassicSimilarity], result of:
              0.014351131 = score(doc=4684,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.20947541 = fieldWeight in 4684, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4684)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
  3. Soylu, A.; Giese, M.; Jimenez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation (2014) 0.00
    0.0020501618 = product of:
      0.006150485 = sum of:
        0.006150485 = product of:
          0.01230097 = sum of:
            0.01230097 = weight(_text_:of in 1576) [ClassicSimilarity], result of:
              0.01230097 = score(doc=1576,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.17955035 = fieldWeight in 1576, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1576)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Grounded on real industrial use cases, we recently proposed an ontology-based visual query system for SPARQL, named OptiqueVQS. Ontology-based visual query systems employ ontologies and visual representations to depict the domain of interest and queries, and are promising to enable end users without any technical background to access data on their own. However, even with considerably small ontologies, the number of ontology elements to choose from increases drastically, and hence hinders usability. Therefore, in this paper, we propose a method using the log of past queries for ranking and suggesting query extensions as a user types a query, and identify emerging issues to be addressed.