Search (3 results, page 1 of 1)

  • × author_ss:"Järvelin, K."
  • × theme_ss:"Informetrie"
  • × year_i:[2000 TO 2010}
  1. Järvelin, K.; Persson, O.: ¬The DCI index : discounted cumulated impact-based research evaluation (2008) 0.00
    0.0036685336 = product of:
      0.011005601 = sum of:
        0.011005601 = weight(_text_:a in 2694) [ClassicSimilarity], result of:
          0.011005601 = score(doc=2694,freq=22.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21126054 = fieldWeight in 2694, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2694)
      0.33333334 = coord(1/3)
    
    Abstract
    Research evaluation is increasingly popular and important among research funding bodies and science policy makers. Various indicators have been proposed to evaluate the standing of individual scientists, institutions, journals, or countries. A simple and popular one among the indicators is the h-index, the Hirsch index (Hirsch 2005), which is an indicator for lifetime achievement of a scholar. Several other indicators have been proposed to complement or balance the h-index. However, these indicators have no conception of aging. The AR-index (Jin et al. 2007) incorporates aging but divides the received citation counts by the raw age of the publication. Consequently, the decay of a publication is very steep and insensitive to disciplinary differences. In addition, we believe that a publication becomes outdated only when it is no longer cited, not because of its age. Finally, all indicators treat citations as equally material when one might reasonably think that a citation from a heavily cited publication should weigh more than a citation froma non-cited or little-cited publication.We propose a new indicator, the Discounted Cumulated Impact (DCI) index, which devalues old citations in a smooth way. It rewards an author for receiving new citations even if the publication is old. Further, it allows weighting of the citations by the citation weight of the citing publication. DCI can be used to calculate research performance on the basis of the h-core of a scholar or any other publication data.
    Type
    a
  2. Niemi, T.; Hirvonen, L.; Järvelin, K.: Multidimensional data model and query language for informetrics (2003) 0.00
    0.0035117732 = product of:
      0.010535319 = sum of:
        0.010535319 = weight(_text_:a in 1753) [ClassicSimilarity], result of:
          0.010535319 = score(doc=1753,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20223314 = fieldWeight in 1753, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1753)
      0.33333334 = coord(1/3)
    
    Abstract
    Multidimensional data analysis or On-line analytical processing (OLAP) offers a single subject-oriented source for analyzing summary data based an various dimensions. We demonstrate that the OLAP approach gives a promising starting point for advanced analysis and comparison among summary data in informetrics applications. At the moment there is no single precise, commonly accepted logical/conceptual model for multidimensional analysis. This is because the requirements of applications vary considerably. We develop a conceptual/logical multidimensional model for supporting the complex and unpredictable needs of informetrics. Summary data are considered with respect of some dimensions. By changing dimensions the user may construct other views an the same summary data. We develop a multidimensional query language whose basic idea is to support the definition of views in a way, which is natural and intuitive for lay users in the informetrics area. We show that this view-oriented query language has a great expressive power and its degree of declarativity is greater than in contemporary operation-oriented or SQL (Structured Query Language)-like OLAP query languages.
    Type
    a
  3. Järvelin, K.; Persson, O.: ¬The DCI-index : discounted cumulated impact-based research evaluation (2008) 0.00
    0.0017697671 = product of:
      0.0053093014 = sum of:
        0.0053093014 = weight(_text_:a in 2332) [ClassicSimilarity], result of:
          0.0053093014 = score(doc=2332,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10191591 = fieldWeight in 2332, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2332)
      0.33333334 = coord(1/3)
    
    Type
    a