Search (39 results, page 1 of 2)

  • × author_ss:"Järvelin, K."
  1. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.06
    0.060702838 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 998) [ClassicSimilarity], result of:
            0.060901042 = score(doc=998,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 998, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=998)
        0.25 = coord(1/4)
      0.045477577 = sum of:
        0.0095431255 = weight(_text_:a in 998) [ClassicSimilarity], result of:
          0.0095431255 = score(doc=998,freq=12.0), product of:
            0.06116359 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.053045183 = queryNorm
            0.15602624 = fieldWeight in 998, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=998)
        0.035934452 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
          0.035934452 = score(doc=998,freq=2.0), product of:
            0.1857552 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.053045183 = queryNorm
            0.19345059 = fieldWeight in 998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=998)
    
    Abstract
    The paper reports a longitudinal analysis of the topical and methodological development of Library and Information Science (LIS). Its focus is on the effects of researchers' disciplines on these developments. The study extends an earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) by a coordinated dataset representing a content analysis of articles published in 31 scholarly LIS journals in 1995, 2005, and 2015. It is novel in its coverage of authors' disciplines, topical and methodological aspects in a coordinated dataset spanning two decades thus allowing trend analysis. The findings include a shrinking trend in the share of LIS from 67 to 36% while Computer Science, and Business and Economics increase their share from 9 and 6% to 21 and 16%, respectively. The earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) for the year 2015 identified three topical clusters of LIS research, focusing on topical subfields, methodologies, and contributing disciplines. Correspondence analysis confirms their existence already in 1995 and traces their development through the decades. The contributing disciplines infuse their concepts, research questions, and approaches to LIS and may also subsume vital parts of LIS in their own structures of knowledge production.
    Date
    22. 6.2023 18:15:06
    Type
    a
  2. Ahlgren, P.; Järvelin, K.: Measuring impact of twelve information scientists using the DCI index (2010) 0.03
    0.02914396 = sum of:
      0.025838124 = product of:
        0.103352495 = sum of:
          0.103352495 = weight(_text_:authors in 3593) [ClassicSimilarity], result of:
            0.103352495 = score(doc=3593,freq=4.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.42738882 = fieldWeight in 3593, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=3593)
        0.25 = coord(1/4)
      0.0033058354 = product of:
        0.006611671 = sum of:
          0.006611671 = weight(_text_:a in 3593) [ClassicSimilarity], result of:
            0.006611671 = score(doc=3593,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.10809815 = fieldWeight in 3593, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3593)
        0.5 = coord(1/2)
    
    Abstract
    The Discounted Cumulated Impact (DCI) index has recently been proposed for research evaluation. In the present work an earlier dataset by Cronin and Meho (2007) is reanalyzed, with the aim of exemplifying the salient features of the DCI index. We apply the index on, and compare our results to, the outcomes of the Cronin-Meho (2007) study. Both authors and their top publications are used as units of analysis, which suggests that, by adjusting the parameters of evaluation according to the needs of research evaluation, the DCI index delivers data on an author's (or publication's) lifetime impact or current impact at the time of evaluation on an author's (or publication's) capability of inviting citations from highly cited later publications as an indication of impact, and on the relative impact across a set of authors (or publications) over their lifetime or currently.
    Type
    a
  3. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.03
    0.026235826 = product of:
      0.052471653 = sum of:
        0.052471653 = sum of:
          0.009350315 = weight(_text_:a in 2230) [ClassicSimilarity], result of:
            0.009350315 = score(doc=2230,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15287387 = fieldWeight in 2230, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
          0.043121338 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
            0.043121338 = score(doc=2230,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
      0.5 = coord(1/2)
    
    Abstract
    We present a deductive data model for concept-based query expansion. It is based on three abstraction levels: the conceptual, linguistic and occurrence levels. Concepts and relationships among them are represented at the conceptual level. The expression level represents natural language expressions for concepts. Each expression has one or more matching models at the occurrence level. Each model specifies the matching of the expression in database indices built in varying ways. The data model supports a concept-based query expansion and formulation tool, the ExpansionTool, for environments providing heterogeneous IR systems. Expansion is controlled by adjustable matching reliability.
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
    Type
    a
  4. Järvelin, K.; Ingwersen, P.; Niemi, T.: ¬A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques (2000) 0.03
    0.025427736 = sum of:
      0.021531772 = product of:
        0.08612709 = sum of:
          0.08612709 = weight(_text_:authors in 4545) [ClassicSimilarity], result of:
            0.08612709 = score(doc=4545,freq=4.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.35615736 = fieldWeight in 4545, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4545)
        0.25 = coord(1/4)
      0.0038959642 = product of:
        0.0077919285 = sum of:
          0.0077919285 = weight(_text_:a in 4545) [ClassicSimilarity], result of:
            0.0077919285 = score(doc=4545,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.12739488 = fieldWeight in 4545, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4545)
        0.5 = coord(1/2)
    
    Abstract
    This article presents a novel user-oriented interface for generalised informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modelling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible and extensible. It enables end users to perform basic informetric ad hoc calculations easily and often with much less effort than in contemporary online retrieval systems. It also provides several fruitful generalisations of typical informetric measurements like impact factors. These are based on substituting traditional foci of analysis, for instance journals, by other object types, such as authors, organisations or countries. In the interface, bibliographic data are modelled as complex objects (non-first normal form relations) and terminological and citation networks involving transitive relationships are modelled as binary relations for deductive processing. The interface is flexible, because it makes it easy to switch focus between various object types for informetric calculations, e.g. from authors to institutions. Moreover, it is demonstrated that all informetric data can easily be broken down by criteria that foster advanced analysis, e.g. by years or content-bearing attributes. Such modelling allows flexible data aggregation along many dimensions. These salient features emerge from the query interface's general data restructuring and aggregation capabilities combined with transitive processing capabilities. The features are illustrated by means of sample queries and results in the article.
    Type
    a
  5. Saastamoinen, M.; Järvelin, K.: Search task features in work tasks of varying types and complexity (2017) 0.02
    0.024866505 = product of:
      0.04973301 = sum of:
        0.04973301 = sum of:
          0.006611671 = weight(_text_:a in 3589) [ClassicSimilarity], result of:
            0.006611671 = score(doc=3589,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.10809815 = fieldWeight in 3589, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3589)
          0.043121338 = weight(_text_:22 in 3589) [ClassicSimilarity], result of:
            0.043121338 = score(doc=3589,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 3589, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3589)
      0.5 = coord(1/2)
    
    Abstract
    Information searching in practice seldom is an end in itself. In work, work task (WT) performance forms the context, which information searching should serve. Therefore, information retrieval (IR) systems development/evaluation should take the WT context into account. The present paper analyzes how WT features: task complexity and task types, affect information searching in authentic work: the types of information needs, search processes, and search media. We collected data on 22 information professionals in authentic work situations in three organization types: city administration, universities, and companies. The data comprise 286 WTs and 420 search tasks (STs). The data include transaction logs, video recordings, daily questionnaires, interviews. and observation. The data were analyzed quantitatively. Even if the participants used a range of search media, most STs were simple throughout the data, and up to 42% of WTs did not include searching. WT's effects on STs are not straightforward: different WT types react differently to WT complexity. Due to the simplicity of authentic searching, the WT/ST types in interactive IR experiments should be reconsidered.
    Type
    a
  6. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.02
    0.023121104 = product of:
      0.046242207 = sum of:
        0.046242207 = sum of:
          0.010307753 = weight(_text_:a in 1369) [ClassicSimilarity], result of:
            0.010307753 = score(doc=1369,freq=14.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.1685276 = fieldWeight in 1369, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1369)
          0.035934452 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
            0.035934452 = score(doc=1369,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.19345059 = fieldWeight in 1369, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1369)
      0.5 = coord(1/2)
    
    Abstract
    Data cubes for OLAP (On-Line Analytical Processing) often need to be constructed from data located in several distributed and autonomous information sources. Such a data integration process is challenging due to semantic, syntactic, and structural heterogeneity among the data. While XML (extensible markup language) is the de facto standard for data exchange, the three types of heterogeneity remain. Moreover, popular path-oriented XML query languages, such as XQuery, require the user to know in much detail the structure of the documents to be processed and are, thus, effectively impractical in many real-world data integration tasks. Several Lowest Common Ancestor (LCA)-based XML query evaluation strategies have recently been introduced to provide a more structure-independent way to access XML documents. We shall, however, show that this approach leads in the context of certain - not uncommon - types of XML documents to undesirable results. This article introduces a novel high-level data extraction primitive that utilizes the purpose-built Smallest Possible Context (SPC) query evaluation strategy. We demonstrate, through a system prototype for OLAP data cube construction and a sample application in informetrics, that our approach has real advantages in data integration.
    Date
    9. 2.2008 17:22:42
    Type
    a
  7. Pharo, N.; Järvelin, K.: "Irrational" searchers and IR-rational researchers (2006) 0.02
    0.02294547 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 4922) [ClassicSimilarity], result of:
            0.07308125 = score(doc=4922,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 4922, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=4922)
        0.25 = coord(1/4)
      0.0046751574 = product of:
        0.009350315 = sum of:
          0.009350315 = weight(_text_:a in 4922) [ClassicSimilarity], result of:
            0.009350315 = score(doc=4922,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15287387 = fieldWeight in 4922, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4922)
        0.5 = coord(1/2)
    
    Abstract
    In this article the authors look at the prescriptions advocated by Web search textbooks in the light of a selection of empirical data of real Web information search processes. They use the strategy of disjointed incrementalism, which is a theoretical foundation from decision making, to focus an how people face complex problems, and claim that such problem solving can be compared to the tasks searchers perform when interacting with the Web. The findings suggest that textbooks an Web searching should take into account that searchers only tend to take a certain number of sources into consideration, that the searchers adjust their goals and objectives during searching, and that searchers reconsider the usefulness of sources at different stages of their work tasks as well as their search tasks.
    Type
    a
  8. Lehtokangas, R.; Keskustalo, H.; Järvelin, K.: Experiments with transitive dictionary translation and pseudo-relevance feedback using graded relevance assessments (2008) 0.02
    0.02294547 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 1349) [ClassicSimilarity], result of:
            0.07308125 = score(doc=1349,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 1349, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=1349)
        0.25 = coord(1/4)
      0.0046751574 = product of:
        0.009350315 = sum of:
          0.009350315 = weight(_text_:a in 1349) [ClassicSimilarity], result of:
            0.009350315 = score(doc=1349,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15287387 = fieldWeight in 1349, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=1349)
        0.5 = coord(1/2)
    
    Abstract
    In this article, the authors present evaluation results for transitive dictionary-based cross-language information retrieval (CLIR) using graded relevance assessments in a best match retrieval environment. A text database containing newspaper articles and a related set of 35 search topics were used in the tests. Source language topics (in English, German, and Swedish) were automatically translated into the target language (Finnish) via an intermediate (or pivot) language. Effectiveness of the transitively translated queries was compared to that of the directly translated and monolingual Finnish queries. Pseudo-relevance feedback (PRF) was also used to expand the original transitive target queries. Cross-language information retrieval performance was evaluated on three relevance thresholds: stringent, regular, and liberal. The transitive translations performed well achieving, on the average, 85-93% of the direct translation performance, and 66-72% of monolingual performance. Moreover, PRF was successful in raising the performance of transitive translation routes in absolute terms as well as in relation to monolingual and direct translation performance applying PRF.
    Type
    a
  9. Talvensaari, T.; Juhola, M.; Laurikkala, J.; Järvelin, K.: Corpus-based cross-language information retrieval in retrieval of highly relevant documents (2007) 0.02
    0.019581081 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 139) [ClassicSimilarity], result of:
            0.060901042 = score(doc=139,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 139, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=139)
        0.25 = coord(1/4)
      0.004355821 = product of:
        0.008711642 = sum of:
          0.008711642 = weight(_text_:a in 139) [ClassicSimilarity], result of:
            0.008711642 = score(doc=139,freq=10.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.14243183 = fieldWeight in 139, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=139)
        0.5 = coord(1/2)
    
    Abstract
    Information retrieval systems' ability to retrieve highly relevant documents has become more and more important in the age of extremely large collections, such as the World Wide Web (WWW). The authors' aim was to find out how corpus-based cross-language information retrieval (CLIR) manages in retrieving highly relevant documents. They created a Finnish-Swedish comparable corpus from two loosely related document collections and used it as a source of knowledge for query translation. Finnish test queries were translated into Swedish and run against a Swedish test collection. Graded relevance assessments were used in evaluating the results and three relevance criterion levels-liberal, regular, and stringent-were applied. The runs were also evaluated with generalized recall and precision, which weight the retrieved documents according to their relevance level. The performance of the Comparable Corpus Translation system (COCOT) was compared to that of a dictionarybased query translation program; the two translation methods were also combined. The results indicate that corpus-based CUR performs particularly well with highly relevant documents. In average precision, COCOT even matched the monolingual baseline on the highest relevance level. The performance of the different query translation methods was further analyzed by finding out reasons for poor rankings of highly relevant documents.
    Type
    a
  10. Vakkari, P.; Chang, Y.-W.; Järvelin, K.: Disciplinary contributions to research topics and methodology in Library and Information Science : leading to fragmentation? (2022) 0.02
    0.019121224 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 767) [ClassicSimilarity], result of:
            0.060901042 = score(doc=767,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 767, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=767)
        0.25 = coord(1/4)
      0.0038959642 = product of:
        0.0077919285 = sum of:
          0.0077919285 = weight(_text_:a in 767) [ClassicSimilarity], result of:
            0.0077919285 = score(doc=767,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.12739488 = fieldWeight in 767, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=767)
        0.5 = coord(1/2)
    
    Abstract
    The study analyses contributions to Library and Information Science (LIS) by researchers representing various disciplines. How are such contributions associated with the choice of research topics and methodology? The study employs a quantitative content analysis of articles published in 31 scholarly LIS journals in 2015. Each article is seen as a contribution to LIS by the authors' disciplines, which are inferred from their affiliations. The unit of analysis is the article-discipline pair. Of the contribution instances, the share of LIS is one third. Computer Science contributes one fifth and Business and Economics one sixth. The latter disciplines dominate the contributions in information retrieval, information seeking, and scientific communication indicating strong influences in LIS. Correspondence analysis reveals three clusters of research, one focusing on traditional LIS with contributions from LIS and Humanities and survey-type research; another on information retrieval with contributions from Computer Science and experimental research; and the third on scientific communication with contributions from Natural Sciences and Medicine and citation analytic research. The strong differentiation of scholarly contributions in LIS hints to the fragmentation of LIS as a discipline.
    Type
    a
  11. Tuomaala, O.; Järvelin, K.; Vakkari, P.: Evolution of library and information science, 1965-2005 : content analysis of journal articles (2014) 0.02
    0.017980123 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 1309) [ClassicSimilarity], result of:
            0.060901042 = score(doc=1309,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 1309, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1309)
        0.25 = coord(1/4)
      0.002754863 = product of:
        0.005509726 = sum of:
          0.005509726 = weight(_text_:a in 1309) [ClassicSimilarity], result of:
            0.005509726 = score(doc=1309,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.090081796 = fieldWeight in 1309, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1309)
        0.5 = coord(1/2)
    
    Abstract
    This article first analyzes library and information science (LIS) research articles published in core LIS journals in 2005. It also examines the development of LIS from 1965 to 2005 in light of comparable data sets for 1965, 1985, and 2005. In both cases, the authors report (a) how the research articles are distributed by topic and (b) what approaches, research strategies, and methods were applied in the articles. In 2005, the largest research areas in LIS by this measure were information storage and retrieval, scientific communication, library and information-service activities, and information seeking. The same research areas constituted the quantitative core of LIS in the previous years since 1965. Information retrieval has been the most popular area of research over the years. The proportion of research on library and information-service activities decreased after 1985, but the popularity of information seeking and of scientific communication grew during the period studied. The viewpoint of research has shifted from library and information organizations to end users and development of systems for the latter. The proportion of empirical research strategies was high and rose over time, with the survey method being the single most important method. However, attention to evaluation and experiments increased considerably after 1985. Conceptual research strategies and system analysis, description, and design were quite popular, but declining. The most significant changes from 1965 to 2005 are the decreasing interest in library and information-service activities and the growth of research into information seeking and scientific communication.
    Type
    a
  12. Kristensen, J.; Järvelin, K.: ¬The effectiveness of a searching thesaurus in free-text searching in a full-text database (1990) 0.01
    0.005398407 = product of:
      0.010796814 = sum of:
        0.010796814 = product of:
          0.021593628 = sum of:
            0.021593628 = weight(_text_:a in 2043) [ClassicSimilarity], result of:
              0.021593628 = score(doc=2043,freq=6.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.3530471 = fieldWeight in 2043, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=2043)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Kettunen, K.; Kunttu, T.; Järvelin, K.: To stem or lemmatize a highly inflectional language in a probabilistic IR environment? (2005) 0.00
    0.0038959642 = product of:
      0.0077919285 = sum of:
        0.0077919285 = product of:
          0.015583857 = sum of:
            0.015583857 = weight(_text_:a in 4395) [ClassicSimilarity], result of:
              0.015583857 = score(doc=4395,freq=32.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.25478977 = fieldWeight in 4395, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4395)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To show that stem generation compares well with lemmatization as a morphological tool for a highly inflectional language for IR purposes in a best-match retrieval system. Design/methodology/approach - Effects of three different morphological methods - lemmatization, stemming and stem production - for Finnish are compared in a probabilistic IR environment (INQUERY). Evaluation is done using a four-point relevance scale which is partitioned differently in different test settings. Findings - Results show that stem production, a lighter method than morphological lemmatization, compares well with lemmatization in a best-match IR environment. Differences in performance between stem production and lemmatization are small and they are not statistically significant in most of the tested settings. It is also shown that hitherto a rather neglected method of morphological processing for Finnish, stemming, performs reasonably well although the stemmer used - a Porter stemmer implementation - is far from optimal for a morphologically complex language like Finnish. In another series of tests, the effects of compound splitting and derivational expansion of queries are tested. Practical implications - Usefulness of morphological lemmatization and stem generation for IR purposes can be estimated with many factors. On the average P-R level they seem to behave very close to each other in a probabilistic IR system. Thus, the choice of the used method with highly inflectional languages needs to be estimated along other dimensions too. Originality/value - Results are achieved using Finnish as an example of a highly inflectional language. The results are of interest for anyone who is interested in processing of morphological variation of a highly inflected language for IR purposes.
    Type
    a
  14. Järvelin, K.; Vakkari, P.: ¬The evolution of library and information science 1965-1985 : a content analysis of journal titles (1993) 0.00
    0.0038568082 = product of:
      0.0077136164 = sum of:
        0.0077136164 = product of:
          0.015427233 = sum of:
            0.015427233 = weight(_text_:a in 4649) [ClassicSimilarity], result of:
              0.015427233 = score(doc=4649,freq=4.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.25222903 = fieldWeight in 4649, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Pirkola, A.; Hedlund, T.; Keskustalo, H.; Järvelin, K.: Dictionary-based cross-language information retrieval : problems, methods, and research findings (2001) 0.00
    0.0038568082 = product of:
      0.0077136164 = sum of:
        0.0077136164 = product of:
          0.015427233 = sum of:
            0.015427233 = weight(_text_:a in 3908) [ClassicSimilarity], result of:
              0.015427233 = score(doc=3908,freq=4.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.25222903 = fieldWeight in 3908, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Pirkola, A.; Järvelin, K.: Employing the resolution power of search keys (2001) 0.00
    0.0033400937 = product of:
      0.0066801873 = sum of:
        0.0066801873 = product of:
          0.013360375 = sum of:
            0.013360375 = weight(_text_:a in 5907) [ClassicSimilarity], result of:
              0.013360375 = score(doc=5907,freq=12.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.21843673 = fieldWeight in 5907, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5907)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Search key resolution power is analyzed in the context of a request, i.e., among the set of search keys for the request. Methods of characterizing the resolution power of keys automatically are studied, and the effects search keys of varying resolution power have on retrieval effectiveness are analyzed. It is shown that it often is possible to identify the best key of a query while the discrimination between the remaining keys presents problems. It is also shown that query performance is improved by suitably using the best key in a structured query. The tests were run with InQuery in a subcollection of the TREC collection, which contained some 515,000 documents
    Type
    a
  17. Järvelin, K.; Persson, O.: ¬The DCI index : discounted cumulated impact-based research evaluation (2008) 0.00
    0.0032303634 = product of:
      0.0064607267 = sum of:
        0.0064607267 = product of:
          0.012921453 = sum of:
            0.012921453 = weight(_text_:a in 2694) [ClassicSimilarity], result of:
              0.012921453 = score(doc=2694,freq=22.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.21126054 = fieldWeight in 2694, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2694)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Research evaluation is increasingly popular and important among research funding bodies and science policy makers. Various indicators have been proposed to evaluate the standing of individual scientists, institutions, journals, or countries. A simple and popular one among the indicators is the h-index, the Hirsch index (Hirsch 2005), which is an indicator for lifetime achievement of a scholar. Several other indicators have been proposed to complement or balance the h-index. However, these indicators have no conception of aging. The AR-index (Jin et al. 2007) incorporates aging but divides the received citation counts by the raw age of the publication. Consequently, the decay of a publication is very steep and insensitive to disciplinary differences. In addition, we believe that a publication becomes outdated only when it is no longer cited, not because of its age. Finally, all indicators treat citations as equally material when one might reasonably think that a citation from a heavily cited publication should weigh more than a citation froma non-cited or little-cited publication.We propose a new indicator, the Discounted Cumulated Impact (DCI) index, which devalues old citations in a smooth way. It rewards an author for receiving new citations even if the publication is old. Further, it allows weighting of the citations by the citation weight of the citing publication. DCI can be used to calculate research performance on the basis of the h-core of a scholar or any other publication data.
    Type
    a
  18. Niemi, T.; Hirvonen, L.; Järvelin, K.: Multidimensional data model and query language for informetrics (2003) 0.00
    0.0030923262 = product of:
      0.0061846524 = sum of:
        0.0061846524 = product of:
          0.012369305 = sum of:
            0.012369305 = weight(_text_:a in 1753) [ClassicSimilarity], result of:
              0.012369305 = score(doc=1753,freq=14.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.20223314 = fieldWeight in 1753, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1753)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multidimensional data analysis or On-line analytical processing (OLAP) offers a single subject-oriented source for analyzing summary data based an various dimensions. We demonstrate that the OLAP approach gives a promising starting point for advanced analysis and comparison among summary data in informetrics applications. At the moment there is no single precise, commonly accepted logical/conceptual model for multidimensional analysis. This is because the requirements of applications vary considerably. We develop a conceptual/logical multidimensional model for supporting the complex and unpredictable needs of informetrics. Summary data are considered with respect of some dimensions. By changing dimensions the user may construct other views an the same summary data. We develop a multidimensional query language whose basic idea is to support the definition of views in a way, which is natural and intuitive for lay users in the informetrics area. We show that this view-oriented query language has a great expressive power and its degree of declarativity is greater than in contemporary operation-oriented or SQL (Structured Query Language)-like OLAP query languages.
    Type
    a
  19. Ferro, N.; Silvello, G.; Keskustalo, H.; Pirkola, A.; Järvelin, K.: ¬The twist measure for IR evaluation : taking user's effort into account (2016) 0.00
    0.0030800302 = product of:
      0.0061600604 = sum of:
        0.0061600604 = product of:
          0.012320121 = sum of:
            0.012320121 = weight(_text_:a in 2771) [ClassicSimilarity], result of:
              0.012320121 = score(doc=2771,freq=20.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.20142901 = fieldWeight in 2771, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2771)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel measure for ranking evaluation, called Twist (t). It is a measure for informational intents, which handles both binary and graded relevance. t stems from the observation that searching is currently a that searching is currently taken for granted and it is natural for users to assume that search engines are available and work well. As a consequence, users may assume the utility they have in finding relevant documents, which is the focus of traditional measures, as granted. On the contrary, they may feel uneasy when the system returns nonrelevant documents because they are then forced to do additional work to get the desired information, and this causes avoidable effort. The latter is the focus of t, which evaluates the effectiveness of a system from the point of view of the effort required to the users to retrieve the desired information. We provide a formal definition of t, a demonstration of its properties, and introduce the notion of effort/gain plots, which complement traditional utility-based measures. By means of an extensive experimental evaluation, t is shown to grasp different aspects of system performances, to not require extensive and costly assessments, and to be a robust tool for detecting differences between systems.
    Type
    a
  20. Sormunen, E.; Kekäläinen, J.; Koivisto, J.; Järvelin, K.: Document text characteristics affect the ranking of the most relevant documents by expanded structured queries (2001) 0.00
    0.0029219734 = product of:
      0.0058439467 = sum of:
        0.0058439467 = product of:
          0.011687893 = sum of:
            0.011687893 = weight(_text_:a in 4487) [ClassicSimilarity], result of:
              0.011687893 = score(doc=4487,freq=18.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.19109234 = fieldWeight in 4487, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4487)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The increasing flood of documentary information through the Internet and other information sources challenges the developers of information retrieval systems. It is not enough that an IR system is able to make a distinction between relevant and non-relevant documents. The reduction of information overload requires that IR systems provide the capability of screening the most valuable documents out of the mass of potentially or marginally relevant documents. This paper introduces a new concept-based method to analyse the text characteristics of documents at varying relevance levels. The results of the document analysis were applied in an experiment on query expansion (QE) in a probabilistic IR system. Statistical differences in textual characteristics of highly relevant and less relevant documents were investigated by applying a facet analysis technique. In highly relevant documents a larger number of aspects of the request were discussed, searchable expressions for the aspects were distributed over a larger set of text paragraphs, and a larger set of unique expressions were used per aspect than in marginally relevant documents. A query expansion experiment verified that the findings of the text analysis can be exploited in formulating more effective queries for best match retrieval in the search for highly relevant documents. The results revealed that expanded queries with concept-based structures performed better than unexpanded queries or Ñnatural languageÒ queries. Further, it was shown that highly relevant documents benefit essentially more from the concept-based QE in ranking than marginally relevant documents.
    Type
    a