Search (5 results, page 1 of 1)

  • × author_ss:"Kent, R.E."
  1. Kent, R.E.: Organizing conceptual knowledge online : metadata interoperability and faceted classification (1998) 0.03
    0.026575929 = product of:
      0.053151857 = sum of:
        0.053151857 = sum of:
          0.009471525 = weight(_text_:a in 57) [ClassicSimilarity], result of:
            0.009471525 = score(doc=57,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 57, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=57)
          0.043680333 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
            0.043680333 = score(doc=57,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 57, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=57)
      0.5 = coord(1/2)
    
    Abstract
    Conceptual Knowledge Markup Language (CKML), an application of XML, is a new standard being promoted for the specification of online conceptual knowledge (Kent and Shrivastava, 1998). CKML follows the philosophy of Conceptual Knowledge Processing (Wille, 1982), a principled approach to knowledge representation and data analysis, which advocates the development of methodologies and techniques to support people in their rational thinking, judgement and actions. CKML was developed and is being used in the WAVE networked information discovery and retrieval system (Kent and Neuss, 1994) as a standard for the specification of conceptual knowledge
    Date
    30.12.2001 16:22:41
    Type
    a
  2. Kent, R.E.: Implications and rules in thesauri (1994) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 3457) [ClassicSimilarity], result of:
              0.009374379 = score(doc=3457,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 3457, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3457)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A central consideration in the study of whole language semantic space as encoded in thesauri is word sense comparability. Shows how word sense comparability can be adequately expressed by the logical implications and rules from Formal Concept Analysis. Formal concept analysis, a new approach to formal logic initiated by Rudolf Wille, has been used for data modelling, analysis and interpretation, and also for knowledge representation and knowledge discovery
    Type
    a
  3. Kent, R.E.: ¬The IFF foundation for ontological knowledge organization (2003) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 5527) [ClassicSimilarity], result of:
              0.009076704 = score(doc=5527,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 5527, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses an axiomatic approach for the semantic integration of ontologies, an approach that extends to first order logic, a previous approach based on information flow. This axiomatic approach is represented in the Information Flow Framework (IFF), a metalevel framework for organizing the information that appears in digital libraries, distributed databases and ontologies. The paper argues that the semantic integration of ontologies is the two-step process of alignment and unification. Ontological alignment consists of the sharing of common terminology and semantics through a mediating ontology. Ontological unification, concentrated in a virtual ontology of community connections, is fusion of the alignment diagram of participant community ontologies-the quotient of the sum of the participant portals modulo the ontological alignment structure.
    Type
    a
  4. Kent, R.E.: ¬The information flow foundation for conceptual knowledge organization (2000) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 121) [ClassicSimilarity], result of:
              0.008285859 = score(doc=121,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 121, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=121)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The sharing of ontologies between diverse communities of discourse allows them to compare their own information structures with that of other communities that share a common terminology and semantics - ontology sharing facilitates interoperability between online knowledge organizations. This paper demonstrates how ontology sharing is formalizable within the conceptual knowledge model of Information Flow (IF) (Barwise and Seligman, 1997). Information Flow indirectly represents sharing through a specifiable, ontology extension hierarchy augmented with synonymic type equivalencing - two ontologies share terminology and meaning through a common generic ontology that each extends. Using the paradigm of participant community ontologies formalized as IF logics, a common shared extensible ontology formalized as an IF theory, participant community specification links from the common ontology to the participating community ontology formalizable as IF theory interpretations, this paper argues that ontology sharing is concentrated in a virtual ontology of community connections, and demonstrates how this virtual ontology is computable as the fusion of the participant ontologies - the quotient of the sum of the participant ontologies modulo the ontological sharing structure
    Type
    a
  5. Neuss, C.; Kent, R.E.: Conceptual analysis of resource meta-information (1995) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2204) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2204,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2204)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the continuously growing amount of Internet accessible information resources, locating relevant information in the WWW becomes increasingly difficult. Recent developments provide scalable mechanisms for maintaing indexes of network accessible information. In order to implement sophisticated retrieval engines, a means of automatic analysis and classification of document meta information has to be found. Proposes the use of methods from the mathematical theory of concept analysis to analyze and interactively explore the information space defined by wide area resource discovery services
    Type
    a