Search (3 results, page 1 of 1)

  • × author_ss:"Kim, S."
  • × year_i:[2010 TO 2020}
  1. Kim, S.; Ko, Y.; Oard, D.W.: Combining lexical and statistical translation evidence for cross-language information retrieval (2015) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 1606) [ClassicSimilarity], result of:
              0.011481222 = score(doc=1606,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 1606, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article explores how best to use lexical and statistical translation evidence together for cross-language information retrieval (CLIR). Lexical translation evidence is assembled from Wikipedia and from a large machine-readable dictionary, statistical translation evidence is drawn from parallel corpora, and evidence from co-occurrence in the document language provides a basis for limiting the adverse effect of translation ambiguity. Coverage statistics for NII Testbeds and Community for Information Access Research (NTCIR) queries confirm that these resources have complementary strengths. Experiments with translation evidence from a small parallel corpus indicate that even rather rough estimates of translation probabilities can yield further improvements over a strong technique for translation weighting based on using Jensen-Shannon divergence as a term-association measure. Finally, a novel approach to posttranslation query expansion using a random walk over the Wikipedia concept link graph is shown to yield further improvements over alternative techniques for posttranslation query expansion. Evaluation results on the NTCIR-5 English-Korean test collection show statistically significant improvements over strong baselines.
    Type
    a
  2. Liu, W.; Dog(an, R.I.; Kim, S.; Comeau, D.C.; Kim, W.; Yeganova, L.; Lu, Z.; Wilbur, W.J.: Author name disambiguation for PubMed (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1240) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1240,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1240, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1240)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Log analysis shows that PubMed users frequently use author names in queries for retrieving scientific literature. However, author name ambiguity may lead to irrelevant retrieval results. To improve the PubMed user experience with author name queries, we designed an author name disambiguation system consisting of similarity estimation and agglomerative clustering. A machine-learning method was employed to score the features for disambiguating a pair of papers with ambiguous names. These features enable the computation of pairwise similarity scores to estimate the probability of a pair of papers belonging to the same author, which drives an agglomerative clustering algorithm regulated by 2 factors: name compatibility and probability level. With transitivity violation correction, high precision author clustering is achieved by focusing on minimizing false-positive pairing. Disambiguation performance is evaluated with manual verification of random samples of pairs from clustering results. When compared with a state-of-the-art system, our evaluation shows that among all the pairs the lumping error rate drops from 10.1% to 2.2% for our system, while the splitting error rises from 1.8% to 7.7%. This results in an overall error rate of 9.9%, compared with 11.9% for the state-of-the-art method. Other evaluations based on gold standard data also show the increase in accuracy of our clustering. We attribute the performance improvement to the machine-learning method driven by a large-scale training set and the clustering algorithm regulated by a name compatibility scheme preferring precision. With integration of the author name disambiguation system into the PubMed search engine, the overall click-through-rate of PubMed users on author name query results improved from 34.9% to 36.9%.
    Type
    a
  3. Kim, S.; Cho, S.: Characteristics of Korean personal names (2013) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 531) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=531,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 531, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=531)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a