Search (3 results, page 1 of 1)

  • × author_ss:"Kim, W."
  • × author_ss:"Wilbur, W.J."
  1. Kim, W.; Wilbur, W.J.: Corpus-based statistical screening for content-bearing terms (2001) 0.00
    0.0027894354 = product of:
      0.005578871 = sum of:
        0.005578871 = product of:
          0.011157742 = sum of:
            0.011157742 = weight(_text_:a in 5188) [ClassicSimilarity], result of:
              0.011157742 = score(doc=5188,freq=34.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21010503 = fieldWeight in 5188, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5188)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Kim and Wilber present three techniques for the algorithmic identification in text of content bearing terms and phrases intended for human use as entry points or hyperlinks. Using a set of 1,075 terms from MEDLINE evaluated on a zero to four, stop word to definite content word scale, they evaluate the ranked lists of their three methods based on their placement of content words in the top ranks. Data consist of the natural language elements of 304,057 MEDLINE records from 1996, and 173,252 Wall Street Journal records from the TIPSTER collection. Phrases are extracted by breaking at punctuation marks and stop words, normalized by lower casing, replacement of nonalphanumerics with spaces, and the reduction of multiple spaces. In the ``strength of context'' approach each document is a vector of binary values for each word or word pair. The words or word pairs are removed from all documents, and the Robertson, Spark Jones relevance weight for each term computed, negative weights replaced with zero, those below a randomness threshold ignored, and the remainder summed for each document, to yield a score for the document and finally to assign to the term the average document score for documents in which it occurred. The average of these word scores is assigned to the original phrase. The ``frequency clumping'' approach defines a random phrase as one whose distribution among documents is Poisson in character. A pvalue, the probability that a phrase frequency of occurrence would be equal to, or less than, Poisson expectations is computed, and a score assigned which is the negative log of that value. In the ``database comparison'' approach if a phrase occurring in a document allows prediction that the document is in MEDLINE rather that in the Wall Street Journal, it is considered to be content bearing for MEDLINE. The score is computed by dividing the number of occurrences of the term in MEDLINE by occurrences in the Journal, and taking the product of all these values. The one hundred top and bottom ranked phrases that occurred in at least 500 documents were collected for each method. The union set had 476 phrases. A second selection was made of two word phrases occurring each in only three documents with a union of 599 phrases. A judge then ranked the two sets of terms as to subject specificity on a 0 to 4 scale. Precision was the average subject specificity of the first r ranks and recall the fraction of the subject specific phrases in the first r ranks and eleven point average precision was used as a summary measure. The three methods all move content bearing terms forward in the lists as does the use of the sum of the logs of the three methods.
    Type
    a
  2. Liu, W.; Dog(an, R.I.; Kim, S.; Comeau, D.C.; Kim, W.; Yeganova, L.; Lu, Z.; Wilbur, W.J.: Author name disambiguation for PubMed (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1240) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1240,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1240, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1240)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Log analysis shows that PubMed users frequently use author names in queries for retrieving scientific literature. However, author name ambiguity may lead to irrelevant retrieval results. To improve the PubMed user experience with author name queries, we designed an author name disambiguation system consisting of similarity estimation and agglomerative clustering. A machine-learning method was employed to score the features for disambiguating a pair of papers with ambiguous names. These features enable the computation of pairwise similarity scores to estimate the probability of a pair of papers belonging to the same author, which drives an agglomerative clustering algorithm regulated by 2 factors: name compatibility and probability level. With transitivity violation correction, high precision author clustering is achieved by focusing on minimizing false-positive pairing. Disambiguation performance is evaluated with manual verification of random samples of pairs from clustering results. When compared with a state-of-the-art system, our evaluation shows that among all the pairs the lumping error rate drops from 10.1% to 2.2% for our system, while the splitting error rises from 1.8% to 7.7%. This results in an overall error rate of 9.9%, compared with 11.9% for the state-of-the-art method. Other evaluations based on gold standard data also show the increase in accuracy of our clustering. We attribute the performance improvement to the machine-learning method driven by a large-scale training set and the clustering algorithm regulated by a name compatibility scheme preferring precision. With integration of the author name disambiguation system into the PubMed search engine, the overall click-through-rate of PubMed users on author name query results improved from 34.9% to 36.9%.
    Type
    a
  3. Yeganova, L.; Comeau, D.C.; Kim, W.; Wilbur, W.J.: How to interpret PubMed queries and why it matters (2009) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2712) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2712,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2712, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2712)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A significant fraction of queries in PubMed(TM) are multiterm queries without parsing instructions. Generally, search engines interpret such queries as collections of terms, and handle them as a Boolean conjunction of these terms. However, analysis of queries in PubMed(TM) indicates that many such queries are meaningful phrases, rather than simple collections of terms. In this study, we examine whether or not it makes a difference, in terms of retrieval quality, if such queries are interpreted as a phrase or as a conjunction of query terms. And, if it does, what is the optimal way of searching with such queries. To address the question, we developed an automated retrieval evaluation method, based on machine learning techniques, that enables us to evaluate and compare various retrieval outcomes. We show that the class of records that contain all the search terms, but not the phrase, qualitatively differs from the class of records containing the phrase. We also show that the difference is systematic, depending on the proximity of query terms to each other within the record. Based on these results, one can establish the best retrieval order for the records. Our findings are consistent with studies in proximity searching.
    Type
    a