Search (2 results, page 1 of 1)

  • × author_ss:"Klavans, R."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Klavans, R.; Boyack, K.W.: Using global mapping to create more accurate document-level maps of research fields (2011) 0.05
    0.054134816 = product of:
      0.10826963 = sum of:
        0.10826963 = product of:
          0.21653926 = sum of:
            0.21653926 = weight(_text_:maps in 4956) [ClassicSimilarity], result of:
              0.21653926 = score(doc=4956,freq=12.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.7603764 = fieldWeight in 4956, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4956)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We describe two general approaches to creating document-level maps of science. To create a local map, one defines and directly maps a sample of data, such as all literature published in a set of information science journals. To create a global map of a research field, one maps "all of science" and then locates a literature sample within that full context. We provide a deductive argument that global mapping should create more accurate partitions of a research field than does local mapping, followed by practical reasons why this may not be so. The field of information science is then mapped at the document level using both local and global methods to provide a case illustration of the differences between the methods. Textual coherence is used to assess the accuracies of both maps. We find that document clusters in the global map have significantly higher coherence than do those in the local map, and that the global map provides unique insights into the field of information science that cannot be discerned from the local map. Specifically, we show that information science and computer science have a large interface and that computer science is the more progressive discipline at that interface. We also show that research communities in temporally linked threads have a much higher coherence than do isolated communities, and that this feature can be used to predict which threads will persist into a subsequent year. Methods that could increase the accuracy of both local and global maps in the future also are discussed.
  2. Boyack, K.W.; Klavans, R.: Creation of a highly detailed, dynamic, global model and map of science (2014) 0.04
    0.0375057 = product of:
      0.0750114 = sum of:
        0.0750114 = product of:
          0.1500228 = sum of:
            0.1500228 = weight(_text_:maps in 1230) [ClassicSimilarity], result of:
              0.1500228 = score(doc=1230,freq=4.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.5268042 = fieldWeight in 1230, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The majority of the effort in metrics research has addressed research evaluation. Far less research has addressed the unique problems of research planning. Models and maps of science that can address the detailed problems associated with research planning are needed. This article reports on the creation of an article-level model and map of science covering 16 years and nearly 20 million articles using cocitation-based techniques. The map is then used to define discipline-like structures consisting of natural groupings of articles and clusters of articles. This combination of detail and high-level structure can be used to address planning-related problems such as identification of emerging topics and the identification of which areas of science and technology are innovative and which are simply persisting. In addition to presenting the model and map, several process improvements that result in greater accuracy structures are detailed, including a bibliographic coupling approach for assigning current papers to cocitation clusters and a sequential hybrid approach to producing visual maps from models.