Search (27 results, page 2 of 2)

  • × author_ss:"Kousha, K."
  • × type_ss:"a"
  1. Kousha, K.; Thelwall, M.: Patent citation analysis with Google (2017) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3317) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3317,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3317, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3317)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citations from patents to scientific publications provide useful evidence about the commercial impact of academic research, but automatically searchable databases are needed to exploit this connection for large-scale patent citation evaluations. Google covers multiple different international patent office databases but does not index patent citations or allow automatic searches. In response, this article introduces a semiautomatic indirect method via Bing to extract and filter patent citations from Google to academic papers with an overall precision of 98%. The method was evaluated with 322,192 science and engineering Scopus articles from every second year for the period 1996-2012. Although manual Google Patent searches give more results, especially for articles with many patent citations, the difference is not large enough to be a major problem. Within Biomedical Engineering, Biotechnology, and Pharmacology & Pharmaceutics, 7% to 10% of Scopus articles had at least one patent citation but other fields had far fewer, so patent citation analysis is only relevant for a minority of publications. Low but positive correlations between Google Patent citations and Scopus citations across all fields suggest that traditional citation counts cannot substitute for patent citations when evaluating research.
    Type
    a
  2. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Do altmetric scores reflect article quality? : evidence from the UK Research Excellence Framework 2021 (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 947) [ClassicSimilarity], result of:
              0.006765375 = score(doc=947,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 947, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=947)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Altmetrics are web-based quantitative impact or attention indicators for academic articles that have been proposed to supplement citation counts. This article reports the first assessment of the extent to which mature altmetrics from Altmetric.com and Mendeley associate with individual article quality scores. It exploits expert norm-referenced peer review scores from the UK Research Excellence Framework 2021 for 67,030+ journal articles in all fields 2014-2017/2018, split into 34 broadly field-based Units of Assessment (UoAs). Altmetrics correlated more strongly with research quality than previously found, although less strongly than raw and field normalized Scopus citation counts. Surprisingly, field normalizing citation counts can reduce their strength as a quality indicator for articles in a single field. For most UoAs, Mendeley reader counts are the best altmetric (e.g., three Spearman correlations with quality scores above 0.5), tweet counts are also a moderate strength indicator in eight UoAs (Spearman correlations with quality scores above 0.3), ahead of news (eight correlations above 0.3, but generally weaker), blogs (five correlations above 0.3), and Facebook (three correlations above 0.3) citations, at least in the United Kingdom. In general, altmetrics are the strongest indicators of research quality in the health and physical sciences and weakest in the arts and humanities.
    Type
    a
  3. Thelwall, M.; Kousha, K.: ResearchGate articles : age, discipline, audience size, and impact (2017) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 3349) [ClassicSimilarity], result of:
              0.005858987 = score(doc=3349,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 3349, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3349)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The large multidisciplinary academic social website ResearchGate aims to help academics to connect with each other and to publicize their work. Despite its popularity, little is known about the age and discipline of the articles uploaded and viewed in the site and whether publication statistics from the site could be useful impact indicators. In response, this article assesses samples of ResearchGate articles uploaded at specific dates, comparing their views in the site to their Mendeley readers and Scopus-indexed citations. This analysis shows that ResearchGate is dominated by recent articles, which attract about three times as many views as older articles. ResearchGate has uneven coverage of scholarship, with the arts and humanities, health professions, and decision sciences poorly represented and some fields receiving twice as many views per article as others. View counts for uploaded articles have low to moderate positive correlations with both Scopus citations and Mendeley readers, which is consistent with them tending to reflect a wider audience than Scopus-publishing scholars. Hence, for articles uploaded to the site, view counts may give a genuinely new audience indicator.
    Type
    a
  4. Orduna-Malea, E.; Thelwall, M.; Kousha, K.: Web citations in patents : evidence of technological impact? (2017) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 3764) [ClassicSimilarity], result of:
              0.005740611 = score(doc=3764,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 3764, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3764)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Patents sometimes cite webpages either as general background to the problem being addressed or to identify prior publications that limit the scope of the patent granted. Counts of the number of patents citing an organization's website may therefore provide an indicator of its technological capacity or relevance. This article introduces methods to extract URL citations from patents and evaluates the usefulness of counts of patent web citations as a technology indicator. An analysis of patents citing 200 US universities or 177 UK universities found computer science and engineering departments to be frequently cited, as well as research-related webpages, such as Wikipedia, YouTube, or the Internet Archive. Overall, however, patent URL citations seem to be frequent enough to be useful for ranking major US and the top few UK universities if popular hosted subdomains are filtered out, but the hit count estimates on the first search engine results page should not be relied upon for accuracy.
    Type
    a
  5. Thelwall, M.; Kousha, K.: Online presentations as a source of scientific impact? : an analysis of PowerPoint files citing academic journals (2008) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1614) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1614,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1614, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1614)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1033) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1033,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1033, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation counts are widely used as indicators of research quality to support or replace human peer review and for lists of top cited papers, researchers, and institutions. Nevertheless, the relationship between citations and research quality is poorly evidenced. We report the first large-scale science-wide academic evaluation of the relationship between research quality and citations (field normalized citation counts), correlating them for 87,739 journal articles in 34 field-based UK Units of Assessment (UoA). The two correlate positively in all academic fields, from very weak (0.1) to strong (0.5), reflecting broadly linear relationships in all fields. We give the first evidence that the correlations are positive even across the arts and humanities. The patterns are similar for the field classification schemes of Scopus and Dimensions.ai, although varying for some individual subjects and therefore more uncertain for these. We also show for the first time that no field has a citation threshold beyond which all articles are excellent quality, so lists of top cited articles are not pure collections of excellence, and neither is any top citation percentile indicator. Thus, while appropriately field normalized citations associate positively with research quality in all fields, they never perfectly reflect it, even at high values.
    Type
    a
  7. Kousha, K.; Thelwall, M.; Rezaie, S.: Assessing the citation impact of books : the role of Google Books, Google Scholar, and Scopus (2011) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 4920) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=4920,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 4920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a