Search (2 results, page 1 of 1)

  • × author_ss:"Larivière, V."
  • × author_ss:"Thelwall, M."
  1. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.02
    0.015682068 = product of:
      0.031364135 = sum of:
        0.031364135 = product of:
          0.06272827 = sum of:
            0.06272827 = weight(_text_:b in 1285) [ClassicSimilarity], result of:
              0.06272827 = score(doc=1285,freq=6.0), product of:
                0.18503809 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.052226946 = queryNorm
                0.33900195 = fieldWeight in 1285, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1285)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
  2. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.01
    0.0074952035 = product of:
      0.014990407 = sum of:
        0.014990407 = product of:
          0.05996163 = sum of:
            0.05996163 = weight(_text_:authors in 2162) [ClassicSimilarity], result of:
              0.05996163 = score(doc=2162,freq=2.0), product of:
                0.23809293 = queryWeight, product of:
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.052226946 = queryNorm
                0.25184128 = fieldWeight in 2162, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.558814 = idf(docFreq=1258, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2162)
          0.25 = coord(1/4)
      0.5 = coord(1/2)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.