Search (4 results, page 1 of 1)

  • × author_ss:"Larivière, V."
  • × language_ss:"e"
  • × theme_ss:"Informetrie"
  1. Haustein, S.; Sugimoto, C.; Larivière, V.: Social media in scholarly communication : Guest editorial (2015) 0.04
    0.04050156 = product of:
      0.06075234 = sum of:
        0.015531673 = weight(_text_:retrieval in 3809) [ClassicSimilarity], result of:
          0.015531673 = score(doc=3809,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.10026272 = fieldWeight in 3809, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3809)
        0.045220666 = sum of:
          0.024405405 = weight(_text_:conference in 3809) [ClassicSimilarity], result of:
            0.024405405 = score(doc=3809,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.12568209 = fieldWeight in 3809, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3809)
          0.020815263 = weight(_text_:22 in 3809) [ClassicSimilarity], result of:
            0.020815263 = score(doc=3809,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.116070345 = fieldWeight in 3809, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=3809)
      0.6666667 = coord(2/3)
    
    Abstract
    This year marks 350 years since the inaugural publications of both the Journal des Sçavans and the Philosophical Transactions, first published in 1665 and considered the birth of the peer-reviewed journal article. This form of scholarly communication has not only remained the dominant model for disseminating new knowledge (particularly for science and medicine), but has also increased substantially in volume. Derek de Solla Price - the "father of scientometrics" (Merton and Garfield, 1986, p. vii) - was the first to document the exponential increase in scientific journals and showed that "scientists have always felt themselves to be awash in a sea of the scientific literature" (Price, 1963, p. 15), as, for example, expressed at the 1948 Royal Society's Scientific Information Conference: Not for the first time in history, but more acutely than ever before, there was a fear that scientists would be overwhelmed, that they would be no longer able to control the vast amounts of potentially relevant material that were pouring forth from the world's presses, that science itself was under threat (Bawden and Robinson, 2008, p. 183).
    One of the solutions to help scientists filter the most relevant publications and, thus, to stay current on developments in their fields during the transition from "little science" to "big science", was the introduction of citation indexing as a Wellsian "World Brain" (Garfield, 1964) of scientific information: It is too much to expect a research worker to spend an inordinate amount of time searching for the bibliographic descendants of antecedent papers. It would not be excessive to demand that the thorough scholar check all papers that have cited or criticized such papers, if they could be located quickly. The citation index makes this check practicable (Garfield, 1955, p. 108). In retrospective, citation indexing can be perceived as a pre-social web version of crowdsourcing, as it is based on the concept that the community of citing authors outperforms indexers in highlighting cognitive links between papers, particularly on the level of specific ideas and concepts (Garfield, 1983). Over the last 50 years, citation analysis and more generally, bibliometric methods, have developed from information retrieval tools to research evaluation metrics, where they are presumed to make scientific funding more efficient and effective (Moed, 2006). However, the dominance of bibliometric indicators in research evaluation has also led to significant goal displacement (Merton, 1957) and the oversimplification of notions of "research productivity" and "scientific quality", creating adverse effects such as salami publishing, honorary authorships, citation cartels, and misuse of indicators (Binswanger, 2015; Cronin and Sugimoto, 2014; Frey and Osterloh, 2006; Haustein and Larivière, 2015; Weingart, 2005).
    Date
    20. 1.2015 18:30:22
  2. Lisée, C.; Larivière, V.; Archambault, E.: Conference proceedings as a source of scientific information : a bibliometric analysis (2008) 0.01
    0.011742055 = product of:
      0.035226166 = sum of:
        0.035226166 = product of:
          0.07045233 = sum of:
            0.07045233 = weight(_text_:conference in 2356) [ClassicSimilarity], result of:
              0.07045233 = score(doc=2356,freq=6.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3628129 = fieldWeight in 2356, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2356)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    While several authors have argued that conference proceedings are an important source of scientific knowledge, the extent of their importance has not been measured in a systematic manner. This article examines the scientific impact and aging of conference proceedings compared to those of scientific literature in general. It shows that the relative importance of proceedings is diminishing over time and currently represents only 1.7% of references made in the natural sciences and engineering, and 2.5% in the social sciences and humanities. Although the scientific impact of proceedings is losing ground to other types of scientific literature in nearly all fields, it has grown from 8% of the references in engineering papers in the early 1980s to its current 10%. Proceedings play a particularly important role in computer sciences, where they account for close to 20% of the references. This article also shows that not unexpectedly, proceedings age faster than cited scientific literature in general. The evidence thus shows that proceedings have a relatively limited scientific impact, on average representing only about 2% of total citations, that their relative importance is shrinking, and that they become obsolete faster than the scientific literature in general.
  3. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.01
    0.00981241 = product of:
      0.029437229 = sum of:
        0.029437229 = product of:
          0.058874458 = sum of:
            0.058874458 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.058874458 = score(doc=2763,freq=4.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 19:22:35
  4. Larivière, V.; Sugimoto, C.R.; Bergeron, P.: In their own image? : a comparison of doctoral students' and faculty members' referencing behavior (2013) 0.01
    0.008135135 = product of:
      0.024405405 = sum of:
        0.024405405 = product of:
          0.04881081 = sum of:
            0.04881081 = weight(_text_:conference in 751) [ClassicSimilarity], result of:
              0.04881081 = score(doc=751,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.25136417 = fieldWeight in 751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.046875 = fieldNorm(doc=751)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article compares doctoral students' and faculty members' referencing behavior through the analysis of a large corpus of scientific articles. It shows that doctoral students tend to cite more documents per article than faculty members, and that the literature they cite is, on average, more recent. It also demonstrates that doctoral students cite a larger proportion of conference proceedings and journal articles than faculty members and faculty members are more likely to self-cite and cite theses than doctoral students. Analysis of the impact of cited journals indicates that in health research, faculty members tend to cite journals with slightly lower impact factors whereas in social sciences and humanities, faculty members cite journals with higher impact factors. Finally, it provides evidence that, in every discipline, faculty members tend to cite a higher proportion of clinical/applied research journals than doctoral students. This study contributes to the understanding of referencing patterns and age stratification in academia. Implications for understanding the information-seeking behavior of academics are discussed.