Search (1 results, page 1 of 1)

  • × author_ss:"Lau, J.H."
  • × theme_ss:"Visualisierung"
  • × year_i:[2010 TO 2020}
  1. Aletras, N.; Baldwin, T.; Lau, J.H.; Stevenson, M.: Evaluating topic representations for exploring document collections (2017) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3325) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3325,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3325, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3325)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Topic models have been shown to be a useful way of representing the content of large document collections, for example, via visualization interfaces (topic browsers). These systems enable users to explore collections by way of latent topics. A standard way to represent a topic is using a term list; that is the top-n words with highest conditional probability within the topic. Other topic representations such as textual and image labels also have been proposed. However, there has been no comparison of these alternative representations. In this article, we compare 3 different topic representations in a document retrieval task. Participants were asked to retrieve relevant documents based on predefined queries within a fixed time limit, presenting topics in one of the following modalities: (a) lists of terms, (b) textual phrase labels, and (c) image labels. Results show that textual labels are easier for users to interpret than are term lists and image labels. Moreover, the precision of retrieved documents for textual and image labels is comparable to the precision achieved by representing topics using term lists, demonstrating that labeling methods are an effective alternative topic representation.
    Type
    a