Search (1 results, page 1 of 1)

  • × author_ss:"Lee, J."
  • × language_ss:"e"
  • × theme_ss:"Internet"
  • × year_i:[2020 TO 2030}
  1. Son, J.; Lee, J.; Larsen, I.; Nissenbaum, K.R.; Woo, J.: Understanding the uncertainty of disaster tweets and its effect on retweeting : the perspectives of uncertainty reduction theory and information entropy (2020) 0.00
    0.0032752731 = product of:
      0.0065505463 = sum of:
        0.0065505463 = product of:
          0.013101093 = sum of:
            0.013101093 = weight(_text_:a in 5962) [ClassicSimilarity], result of:
              0.013101093 = score(doc=5962,freq=30.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.24669915 = fieldWeight in 5962, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The rapid and wide dissemination of up-to-date, localized information is a central issue during disasters. Being attributed to the original 140-character length, Twitter provides its users with quick-posting and easy-forwarding features that facilitate the timely dissemination of warnings and alerts. However, a concern arises with respect to the terseness of tweets that restricts the amount of information conveyed in a tweet and thus increases a tweet's uncertainty. We tackle such concerns by proposing entropy as a measure for a tweet's uncertainty. Based on the perspectives of Uncertainty Reduction Theory (URT), we theorize that the more uncertain information of a disaster tweet, the higher the entropy, which will lead to a lower retweet count. By leveraging the statistical and predictive analyses, we provide evidence supporting that entropy validly and reliably assesses the uncertainty of a tweet. This study contributes to improving our understanding of information propagation on Twitter during disasters. Academically, we offer a new variable of entropy to measure a tweet's uncertainty, an important factor influencing disaster tweets' retweeting. Entropy plays a critical role to better comprehend URLs and emoticons as a means to convey information. Practically, this research suggests a set of guidelines for effectively crafting disaster messages on Twitter.
    Type
    a