Search (1 results, page 1 of 1)

  • × author_ss:"Lee, J."
  • × theme_ss:"Internet"
  • × year_i:[2020 TO 2030}
  1. Son, J.; Lee, J.; Larsen, I.; Nissenbaum, K.R.; Woo, J.: Understanding the uncertainty of disaster tweets and its effect on retweeting : the perspectives of uncertainty reduction theory and information entropy (2020) 0.01
    0.010601042 = product of:
      0.07420729 = sum of:
        0.037103646 = weight(_text_:wide in 5962) [ClassicSimilarity], result of:
          0.037103646 = score(doc=5962,freq=2.0), product of:
            0.15158753 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03421255 = queryNorm
            0.24476713 = fieldWeight in 5962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5962)
        0.037103646 = weight(_text_:wide in 5962) [ClassicSimilarity], result of:
          0.037103646 = score(doc=5962,freq=2.0), product of:
            0.15158753 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03421255 = queryNorm
            0.24476713 = fieldWeight in 5962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5962)
      0.14285715 = coord(2/14)
    
    Abstract
    The rapid and wide dissemination of up-to-date, localized information is a central issue during disasters. Being attributed to the original 140-character length, Twitter provides its users with quick-posting and easy-forwarding features that facilitate the timely dissemination of warnings and alerts. However, a concern arises with respect to the terseness of tweets that restricts the amount of information conveyed in a tweet and thus increases a tweet's uncertainty. We tackle such concerns by proposing entropy as a measure for a tweet's uncertainty. Based on the perspectives of Uncertainty Reduction Theory (URT), we theorize that the more uncertain information of a disaster tweet, the higher the entropy, which will lead to a lower retweet count. By leveraging the statistical and predictive analyses, we provide evidence supporting that entropy validly and reliably assesses the uncertainty of a tweet. This study contributes to improving our understanding of information propagation on Twitter during disasters. Academically, we offer a new variable of entropy to measure a tweet's uncertainty, an important factor influencing disaster tweets' retweeting. Entropy plays a critical role to better comprehend URLs and emoticons as a means to convey information. Practically, this research suggests a set of guidelines for effectively crafting disaster messages on Twitter.