Search (4 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  • × language_ss:"e"
  • × theme_ss:"Citation indexing"
  1. Leydesdorff, L.: On the normalization and visualization of author co-citation data : Salton's Cosine versus the Jaccard index (2008) 0.01
    0.013301588 = product of:
      0.1064127 = sum of:
        0.1064127 = weight(_text_:property in 1341) [ClassicSimilarity], result of:
          0.1064127 = score(doc=1341,freq=2.0), product of:
            0.25336683 = queryWeight, product of:
              6.335595 = idf(docFreq=212, maxDocs=44218)
              0.039991006 = queryNorm
            0.4199946 = fieldWeight in 1341, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.335595 = idf(docFreq=212, maxDocs=44218)
              0.046875 = fieldNorm(doc=1341)
      0.125 = coord(1/8)
    
    Abstract
    The debate about which similarity measure one should use for the normalization in the case of Author Co-citation Analysis (ACA) is further complicated when one distinguishes between the symmetrical co-citation - or, more generally, co-occurrence - matrix and the underlying asymmetrical citation - occurrence - matrix. In the Web environment, the approach of retrieving original citation data is often not feasible. In that case, one should use the Jaccard index, but preferentially after adding the number of total citations (i.e., occurrences) on the main diagonal. Unlike Salton's cosine and the Pearson correlation, the Jaccard index abstracts from the shape of the distributions and focuses only on the intersection and the sum of the two sets. Since the correlations in the co-occurrence matrix may be spurious, this property of the Jaccard index can be considered as an advantage in this case.
  2. Leydesdorff, L.: Theories of citation? (1999) 0.01
    0.010843484 = product of:
      0.08674787 = sum of:
        0.08674787 = weight(_text_:network in 5130) [ClassicSimilarity], result of:
          0.08674787 = score(doc=5130,freq=4.0), product of:
            0.17809492 = queryWeight, product of:
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.039991006 = queryNorm
            0.48708782 = fieldWeight in 5130, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5130)
      0.125 = coord(1/8)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication
  3. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.01
    0.009294414 = product of:
      0.07435531 = sum of:
        0.07435531 = weight(_text_:network in 4427) [ClassicSimilarity], result of:
          0.07435531 = score(doc=4427,freq=4.0), product of:
            0.17809492 = queryWeight, product of:
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.039991006 = queryNorm
            0.41750383 = fieldWeight in 4427, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.046875 = fieldNorm(doc=4427)
      0.125 = coord(1/8)
    
    Abstract
    The aggregated journal-journal citation matrix derived from Journal Citation Reports 2001 can be decomposed into a unique subject classification using the graph-analytical algorithm of bi-connected components. This technique was recently incorporated in software tools for social network analysis. The matrix can be assessed in terms of its decomposability using articulation points which indicate overlap between the components. The articulation points of this set did not exhibit a next-order network of "general science" journals. However, the clusters differ in size and in terms of the internal density of their relations. A full classification of the journals is provided in the Appendix. The clusters can also be extracted and mapped for the visualization.
  4. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.01
    0.0054767863 = product of:
      0.04381429 = sum of:
        0.04381429 = weight(_text_:network in 3335) [ClassicSimilarity], result of:
          0.04381429 = score(doc=3335,freq=2.0), product of:
            0.17809492 = queryWeight, product of:
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.039991006 = queryNorm
            0.2460165 = fieldWeight in 3335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3335)
      0.125 = coord(1/8)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.