Search (37 results, page 1 of 2)

  • × author_ss:"Leydesdorff, L."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.023258494 = product of:
      0.04651699 = sum of:
        0.04651699 = sum of:
          0.009076704 = weight(_text_:a in 4681) [ClassicSimilarity], result of:
            0.009076704 = score(doc=4681,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1709182 = fieldWeight in 4681, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.037440285 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4681,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.5 = coord(1/2)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Type
    a
  2. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 4186) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=4186,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 4186, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.03120024 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4186,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Type
    a
  3. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1200) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1200,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1200, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Type
    a
  4. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3436) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3436,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3436, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3436)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Type
    a
  5. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 4767) [ClassicSimilarity], result of:
              0.010739701 = score(doc=4767,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 4767, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
    Type
    a
  6. Baumgartner, S.E.; Leydesdorff, L.: Group-based trajectory modeling (GBTM) of citations in scholarly literature : dynamic qualities of "transient" and "sticky knowledge claims" (2014) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1241,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1241, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Group-based trajectory modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (virology, 24 journals) to distinguish among the developmental trajectories in subpopulations. Can citation patterns of highly-cited papers be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than 10 years after publication and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after 2 or 3 years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, fifth-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than 10%. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not allow us to define a percentage of highly cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations but only the levels of aggregated citations (which are field-specific).
    Type
    a
  7. Leydesdorff, L.; Rotolo, D.; Rafols, I.: Bibliometric perspectives on medical innovation using the medical subject headings of PubMed (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 494) [ClassicSimilarity], result of:
              0.00994303 = score(doc=494,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 494, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=494)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the MEDLINE database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the MEDLINE database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the MEDLINE database on one hand, and the Science Citation Index and Scopus (containing citation information) on the other.
    Type
    a
  8. Leydesdorff, L.; Opthof, T.: Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations (2010) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 4107) [ClassicSimilarity], result of:
              0.009076704 = score(doc=4107,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 4107, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Impact factors (and similar measures such as the Scimago Journal Rankings) suffer from two problems: (a) citation behavior varies among fields of science and, therefore, leads to systematic differences, and (b) there are no statistics to inform us whether differences are significant. The recently introduced "source normalized impact per paper" indicator of Scopus tries to remedy the first of these two problems, but a number of normalization decisions are involved, which makes it impossible to test for significance. Using fractional counting of citations-based on the assumption that impact is proportionate to the number of references in the citing documents-citations can be contextualized at the paper level and aggregated impacts of sets can be tested for their significance. It can be shown that the weighted impact of Annals of Mathematics (0.247) is not so much lower than that of Molecular Cell (0.386) despite a five-f old difference between their impact factors (2.793 and 13.156, respectively).
    Type
    a
  9. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 943) [ClassicSimilarity], result of:
              0.009076704 = score(doc=943,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 943, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Type
    a
  10. Ye, F.Y.; Yu, S.S.; Leydesdorff, L.: ¬The Triple Helix of university-industry-government relations at the country level and its dynamic evolution under the pressures of globalization (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 1110) [ClassicSimilarity], result of:
              0.009076704 = score(doc=1110,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 1110, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1110)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using data from the Web of Science (WoS), we analyze the mutual information among university, industry, and government addresses (U-I-G) at the country level for a number of countries. The dynamic evolution of the Triple Helix can thus be compared among developed and developing nations in terms of cross-sectional coauthorship relations. The results show that the Triple Helix interactions among the three subsystems U-I-G become less intensive over time, but unequally for different countries. We suggest that globalization erodes local Triple Helix relations and thus can be expected to have increased differentiation in national systems since the mid-1990s. This effect of globalization is more pronounced in developed countries than in developing ones. In the dynamic analysis, we focus on a more detailed comparison between China and the United States. Specifically, the Chinese Academy of the (Social) Sciences is changing increasingly from a public research institute to an academic one, and this has a measurable effect on China's position in the globalization.
    Type
    a
  11. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 3335) [ClassicSimilarity], result of:
              0.00894975 = score(doc=3335,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 3335, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
    Type
    a
  12. Ye, F.Y.; Leydesdorff, L.: ¬The "academic trace" of the performance matrix : a mathematical synthesis of the h-index and the integrated impact indicator (I3) (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1237) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1237,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1237, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1237)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The h-index provides us with 9 natural classes which can be written as a matrix of 3 vectors. The 3 vectors are: X = (X1, X2, X3) and indicates publication distribution in the h-core, the h-tail, and the uncited ones, respectively; Y = (Y1, Y2, Y3) denotes the citation distribution of the h-core, the h-tail and the so-called "excess" citations (above the h-threshold), respectively; and Z = (Z1, Z2, Z3) = (Y1-X1, Y2-X2, Y3-X3). The matrix V = (X,Y,Z)T constructs a measure of academic performance, in which the 9 numbers can all be provided with meanings in different dimensions. The "academic trace" tr(V) of this matrix follows naturally, and contributes a unique indicator for total academic achievements by summarizing and weighting the accumulation of publications and citations. This measure can also be used to combine the advantages of the h-index and the integrated impact indicator (I3) into a single number with a meaningful interpretation of the values. We illustrate the use of tr(V) for the cases of 2 journal sets, 2 universities, and ourselves as 2 individual authors.
    Type
    a
  13. Leydesdorff, L.; Nerghes, A.: Co-word maps and topic modeling : a comparison using small and medium-sized corpora (N?<?1.000) (2017) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3538) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3538,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3538, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Induced by "big data," "topic modeling" has become an attractive alternative to mapping co-words in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument ("The Leiden Manifesto") and then upscale to a sample of moderate size (n?=?687) to study the pros and cons of the two approaches in terms of the resulting possibilities for making semantic maps that can serve an argument. The results from co-word mapping (using two different routines) versus topic modeling are significantly uncorrelated. Whereas components in the co-word maps can easily be designated, the topic models provide sets of words that are very differently organized. In these samples, the topic models seem to reveal similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does not replace co-word mapping in small and medium-sized sets; but the paper leaves open the possibility that topic modeling would work well for the semantic mapping of large sets.
    Type
    a
  14. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1238) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1238,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1238, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Type
    a
  15. Leydesdorff, L.: Accounting for the uncertainty in the evaluation of percentile ranks (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 447) [ClassicSimilarity], result of:
              0.008118451 = score(doc=447,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=447)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Rotolo, D.; Leydesdorff, L.: Matching Medline/PubMed data with Web of Science: A routine in R language (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2224) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2224,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2224, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2224)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel routine, namely medlineR, based on the R language, that allows the user to match data from Medline/PubMed with records indexed in the ISI Web of Science (WoS) database. The matching allows exploiting the rich and controlled vocabulary of medical subject headings (MeSH) of Medline/PubMed with additional fields of WoS. The integration provides data (e.g., citation data, list of cited reference, list of the addresses of authors' host organizations, WoS subject categories) to perform a variety of scientometric analyses. This brief communication describes medlineR, the method on which it relies, and the steps the user should follow to perform the matching across the two databases. To demonstrate the differences from Leydesdorff and Opthof (Journal of the American Society for Information Science and Technology, 64(5), 1076-1080), we conclude this artcle by testing the routine on the MeSH category "Burgada syndrome."
    Type
    a
  17. Leydesdorff, L.; Heimeriks, G.; Rotolo, D.: Journal portfolio analysis for countries, cities, and organizations : maps and comparisons (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2781) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2781,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2781, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Web of Science data, portfolio analysis in terms of journal coverage can be projected onto a base map for units of analysis such as countries, cities, universities, and firms. The units of analysis under study can be compared statistically across the 10,000+ journals. The interdisciplinarity of the portfolios is measured using Rao-Stirling diversity or Zhang et?al.'s improved measure 2D3. At the country level we find regional differentiation (e.g., Latin American or Asian countries), but also a major divide between advanced and less-developed countries. Israel and Israeli cities outperform other nations and cities in terms of diversity. Universities appear to be specifically related to firms when a number of these units are exploratively compared. The instrument is relatively simple and straightforward, and one can generalize the application to any document set retrieved from the Web of Science (WoS). Further instruction is provided online at http://www.leydesdorff.net/portfolio.
    Type
    a
  18. Shelton, R.D.; Leydesdorff, L.: Publish or patent : bibliometric evidence for empirical trade-offs in national funding strategies (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 70) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=70,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 70, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multivariate linear regression models suggest a trade-off in allocations of national research and development (R&D). Government funding and spending in the higher education sector encourage publications as a long-term research benefit. Conversely, other components such as industrial funding and spending in the business sector encourage patenting. Our results help explain why the United States trails the European Union in publications: The focus in the United States is on industrial funding-some 70% of its total R&D investment. Likewise, our results also help explain why the European Union trails the United States in patenting, since its focus on government funding is less effective than industrial funding in predicting triadic patenting. Government funding contributes negatively to patenting in a multiple regression, and this relationship is significant in the case of triadic patenting. We provide new forecasts about the relationships of the United States, the European Union, and China for publishing; these results suggest much later dates for changes than previous forecasts because Chinese growth has been slowing down since 2003. Models for individual countries might be more successful than regression models whose parameters are averaged over a set of countries because nations can be expected to differ historically in terms of the institutional arrangements and funding schemes.
    Type
    a
  19. Leydesdorff, L.; Park, H.W.; Wagner, C.: International coauthorship relations in the Social Sciences Citation Index : is internationalization leading the Network? (2014) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 1505) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=1505,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 1505, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1505)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    International coauthorship relations have increasingly shaped another dynamic in the natural and life sciences during recent decades. However, much less is known about such internationalization in the social sciences. In this study, we analyze international and domestic coauthorship relations of all citable items in the DVD version of the Social Sciences Citation Index 2011 (SSCI). Network statistics indicate 4 groups of nations: (a) an Asian-Pacific one to which all Anglo-Saxon nations (including the United Kingdom and Ireland) are attributed, (b) a continental European one including also the Latin-American countries, (c) the Scandinavian nations, and (d) a community of African nations. Within the EU-28, 11 of the EU-15 states have dominant positions. In many respects, the network parameters are not so different from the Science Citation Index. In addition to these descriptive statistics, we address the question of the relative weights of the international versus domestic networks. An information-theoretical test is proposed at the level of organizational addresses within each nation; the results are mixed, but the international dimension is more important than the national one in the aggregated sets (as in the Science Citation Index). In some countries (e.g., France), however, the national distribution is leading more than the international one. Decomposition of the United States in terms of states shows a similarly mixed result; more U.S. states are domestically oriented in the SSCI and more internationally in the SCI. The international networks have grown during the last decades in addition to the national ones but not by replacing them.
    Type
    a
  20. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 5225) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=5225,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 5225, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
    Type
    a