Search (65 results, page 2 of 4)

  • × author_ss:"Leydesdorff, L."
  • × theme_ss:"Informetrie"
  1. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 82) [ClassicSimilarity], result of:
              0.008285859 = score(doc=82,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 82, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
    Type
    a
  2. Lucio-Arias, D.; Leydesdorff, L.: Main-path analysis and path-dependent transitions in HistCite(TM)-based historiograms (2008) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2373) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2373,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2373, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2373)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the program HistCite(TM) it is possible to generate and visualize the most relevant papers in a set of documents retrieved from the Science Citation Index. Historical reconstructions of scientific developments can be represented chronologically as developments in networks of citation relations extracted from scientific literature. This study aims to go beyond the historical reconstruction of scientific knowledge, enriching the output of HistCiteTM with algorithms from social-network analysis and information theory. Using main-path analysis, it is possible to highlight the structural backbone in the development of a scientific field. The expected information value of the message can be used to indicate whether change in the distribution (of citations) has occurred to such an extent that a path-dependency is generated. This provides us with a measure of evolutionary change between subsequent documents. The forgetting and rewriting of historically prior events at the research front can thus be indicated. These three methods - HistCite, main path and path dependent transitions - are applied to a set of documents related to fullerenes and the fullerene-like structures known as nanotubes.
    Type
    a
  3. Leydesdorff, L.; Nerghes, A.: Co-word maps and topic modeling : a comparison using small and medium-sized corpora (N?<?1.000) (2017) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3538) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3538,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3538, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Induced by "big data," "topic modeling" has become an attractive alternative to mapping co-words in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument ("The Leiden Manifesto") and then upscale to a sample of moderate size (n?=?687) to study the pros and cons of the two approaches in terms of the resulting possibilities for making semantic maps that can serve an argument. The results from co-word mapping (using two different routines) versus topic modeling are significantly uncorrelated. Whereas components in the co-word maps can easily be designated, the topic models provide sets of words that are very differently organized. In these samples, the topic models seem to reveal similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does not replace co-word mapping in small and medium-sized sets; but the paper leaves open the possibility that topic modeling would work well for the semantic mapping of large sets.
    Type
    a
  4. Leydesdorff, L.: ¬The generation of aggregated journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index (1994) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 8281) [ClassicSimilarity], result of:
              0.008202582 = score(doc=8281,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 8281, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=8281)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes a method for the generation of journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index. Discusses sources of potential error from this data. Offers strategies to counteract such errors. Analyzes a number of scientometric periodical mappings in relation to mappings from previous studies which have used tape data and/or data from ISI's Journal Citation Reports. Compares the quality of these mappings with the quality of those for previous years in order to demonstrate the use of such mappings as indicators for dynamic developments in the sciences
    Type
    a
  5. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1238) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1238,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1238, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Type
    a
  6. Leydesdorff, L.: Why words and co-word cannot map the development of the science (1997) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 147) [ClassicSimilarity], result of:
              0.008118451 = score(doc=147,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 147, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=147)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Analyses and compares in term of co-occurrences and co-absenses of words in a restricted set of full-text articles from a sub-specialty of biochemistry. By using the distribution of words over the section, a clear distinction among 'theoretical' 'observation', and 'methodological' terminology can be made in individual articles. However, at the level of the set this structure is no longer retrieval: Words change both in terms of frequencies of relations with other words, and in terms of positional meaning from 1 text to another. The fluidity of networks in which nodes and links may chenge positions is ecpected to destabilise representations of developments of the sciences on the basis of co-occurrences and co-absenses of words. Discusses the consequences for the lexicographic approach to generating artificial intelligence from scientific texts
    Type
    a
  7. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4427) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4427,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4427, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aggregated journal-journal citation matrix derived from Journal Citation Reports 2001 can be decomposed into a unique subject classification using the graph-analytical algorithm of bi-connected components. This technique was recently incorporated in software tools for social network analysis. The matrix can be assessed in terms of its decomposability using articulation points which indicate overlap between the components. The articulation points of this set did not exhibit a next-order network of "general science" journals. However, the clusters differ in size and in terms of the internal density of their relations. A full classification of the journals is provided in the Appendix. The clusters can also be extracted and mapped for the visualization.
    Type
    a
  8. Leydesdorff, L.: Accounting for the uncertainty in the evaluation of percentile ranks (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 447) [ClassicSimilarity], result of:
              0.008118451 = score(doc=447,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=447)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Rotolo, D.; Leydesdorff, L.: Matching Medline/PubMed data with Web of Science: A routine in R language (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2224) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2224,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2224, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2224)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel routine, namely medlineR, based on the R language, that allows the user to match data from Medline/PubMed with records indexed in the ISI Web of Science (WoS) database. The matching allows exploiting the rich and controlled vocabulary of medical subject headings (MeSH) of Medline/PubMed with additional fields of WoS. The integration provides data (e.g., citation data, list of cited reference, list of the addresses of authors' host organizations, WoS subject categories) to perform a variety of scientometric analyses. This brief communication describes medlineR, the method on which it relies, and the steps the user should follow to perform the matching across the two databases. To demonstrate the differences from Leydesdorff and Opthof (Journal of the American Society for Information Science and Technology, 64(5), 1076-1080), we conclude this artcle by testing the routine on the MeSH category "Burgada syndrome."
    Type
    a
  10. Leydesdorff, L.; Heimeriks, G.; Rotolo, D.: Journal portfolio analysis for countries, cities, and organizations : maps and comparisons (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2781) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2781,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2781, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Web of Science data, portfolio analysis in terms of journal coverage can be projected onto a base map for units of analysis such as countries, cities, universities, and firms. The units of analysis under study can be compared statistically across the 10,000+ journals. The interdisciplinarity of the portfolios is measured using Rao-Stirling diversity or Zhang et?al.'s improved measure 2D3. At the country level we find regional differentiation (e.g., Latin American or Asian countries), but also a major divide between advanced and less-developed countries. Israel and Israeli cities outperform other nations and cities in terms of diversity. Universities appear to be specifically related to firms when a number of these units are exploratively compared. The instrument is relatively simple and straightforward, and one can generalize the application to any document set retrieved from the Web of Science (WoS). Further instruction is provided online at http://www.leydesdorff.net/portfolio.
    Type
    a
  11. Leydesdorff, L.; Rafols, I.: ¬A global map of science based on the ISI subject categories (2009) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2713) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2713,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2713, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2713)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The decomposition of scientific literature into disciplinary and subdisciplinary structures is one of the core goals of scientometrics. How can we achieve a good decomposition? The ISI subject categories classify journals included in the Science Citation Index (SCI). The aggregated journal-journal citation matrix contained in the Journal Citation Reports can be aggregated on the basis of these categories. This leads to an asymmetrical matrix (citing versus cited) that is much more densely populated than the underlying matrix at the journal level. Exploratory factor analysis of the matrix of subject categories suggests a 14-factor solution. This solution could be interpreted as the disciplinary structure of science. The nested maps of science (corresponding to 14 factors, 172 categories, and 6,164 journals) are online at http://www.leydesdorff.net/map06. Presumably, inaccuracies in the attribution of journals to the ISI subject categories average out so that the factor analysis reveals the main structures. The mapping of science could, therefore, be comprehensive and reliable on a large scale albeit imprecise in terms of the attribution of journals to the ISI subject categories.
    Type
    a
  12. Shelton, R.D.; Leydesdorff, L.: Publish or patent : bibliometric evidence for empirical trade-offs in national funding strategies (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 70) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=70,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 70, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multivariate linear regression models suggest a trade-off in allocations of national research and development (R&D). Government funding and spending in the higher education sector encourage publications as a long-term research benefit. Conversely, other components such as industrial funding and spending in the business sector encourage patenting. Our results help explain why the United States trails the European Union in publications: The focus in the United States is on industrial funding-some 70% of its total R&D investment. Likewise, our results also help explain why the European Union trails the United States in patenting, since its focus on government funding is less effective than industrial funding in predicting triadic patenting. Government funding contributes negatively to patenting in a multiple regression, and this relationship is significant in the case of triadic patenting. We provide new forecasts about the relationships of the United States, the European Union, and China for publishing; these results suggest much later dates for changes than previous forecasts because Chinese growth has been slowing down since 2003. Models for individual countries might be more successful than regression models whose parameters are averaged over a set of countries because nations can be expected to differ historically in terms of the institutional arrangements and funding schemes.
    Type
    a
  13. Leydesdorff, L.; Park, H.W.; Wagner, C.: International coauthorship relations in the Social Sciences Citation Index : is internationalization leading the Network? (2014) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 1505) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=1505,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 1505, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1505)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    International coauthorship relations have increasingly shaped another dynamic in the natural and life sciences during recent decades. However, much less is known about such internationalization in the social sciences. In this study, we analyze international and domestic coauthorship relations of all citable items in the DVD version of the Social Sciences Citation Index 2011 (SSCI). Network statistics indicate 4 groups of nations: (a) an Asian-Pacific one to which all Anglo-Saxon nations (including the United Kingdom and Ireland) are attributed, (b) a continental European one including also the Latin-American countries, (c) the Scandinavian nations, and (d) a community of African nations. Within the EU-28, 11 of the EU-15 states have dominant positions. In many respects, the network parameters are not so different from the Science Citation Index. In addition to these descriptive statistics, we address the question of the relative weights of the international versus domestic networks. An information-theoretical test is proposed at the level of organizational addresses within each nation; the results are mixed, but the international dimension is more important than the national one in the aggregated sets (as in the Science Citation Index). In some countries (e.g., France), however, the national distribution is leading more than the international one. Decomposition of the United States in terms of states shows a similarly mixed result; more U.S. states are domestically oriented in the SSCI and more internationally in the SCI. The international networks have grown during the last decades in addition to the national ones but not by replacing them.
    Type
    a
  14. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 5225) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=5225,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 5225, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
    Type
    a
  15. Zhou, P.; Leydesdorff, L.: ¬A comparison between the China Scientific and Technical Papers and Citations Database and the Science Citation Index in terms of journal hierarchies and interjournal citation relations (2007) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 70) [ClassicSimilarity], result of:
              0.007030784 = score(doc=70,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 70, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The journal structure in the China Scientific and Technical Papers and Citations Database (CSTPCD) is analyzed from three perspectives: the database level, the specialty level, and the institutional level (i.e., university journals vs. journals issued by the Chinese Academy of Sciences). The results are compared with those for (Chinese) journals included in the Science Citation Index (SCI). The frequency of journal-journal citation relations in the CSTPCD is an order of magnitude lower than in the SCI. Chinese journals, especially high-quality journals, prefer to cite international journals rather than domestic ones; however, Chinese journals do not get an equivalent reception from their international counterparts. The international visibility of Chinese journals is low, but varies among fields of science. Journals of the Chinese Academy of Sciences have a better reception in the international scientific community than university journals.
    Type
    a
  16. Leydesdorff, L.: Betweenness centrality as an indicator of the interdisciplinarity of scientific journals (2007) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 453) [ClassicSimilarity], result of:
              0.007030784 = score(doc=453,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 453, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=453)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In addition to science citation indicators of journals like impact and immediacy, social network analysis provides a set of centrality measures like degree, betweenness, and closeness centrality. These measures are first analyzed for the entire set of 7,379 journals included in the Journal Citation Reports of the Science Citation Index and the Social Sciences Citation Index 2004 (Thomson ISI, Philadelphia, PA), and then also in relation to local citation environments that can be considered as proxies of specialties and disciplines. Betweenness centrality is shown to be an indicator of the interdisciplinarity of journals, but only in local citation environments and after normalization; otherwise, the influence of degree centrality (size) overshadows the betweenness-centrality measure. The indicator is applied to a variety of citation environments, including policy-relevant ones like biotechnology and nanotechnology. The values of the indicator remain sensitive to the delineations of the set because of the indicator's local character. Maps showing interdisciplinarity of journals in terms of betweenness centrality can be drawn using information about journal citation environments, which is available online.
    Type
    a
  17. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1108) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1108,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1108, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Type
    a
  18. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 3322) [ClassicSimilarity], result of:
              0.007030784 = score(doc=3322,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 3322, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3322)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines the use of scientometric overlay mapping as a tool of "strategic intelligence" to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical, social, and cognitive spaces. To do so, we longitudinally analyze (with publication and patent data) three case studies of emerging technologies in the medical domain. These are RNA interference (RNAi), human papillomavirus (HPV) testing technologies for cervical cancer, and thiopurine methyltransferase (TPMT) genetic testing. Given the flexibility (i.e., adaptability to different sources of data) and granularity (i.e., applicability across multiple levels of data aggregation) of overlay mapping techniques, we argue that these techniques can favor the integration and comparison of results from different contexts and cases, thus potentially functioning as a platform for "distributed" strategic intelligence for analysts and decision makers.
    Type
    a
  19. Rafols, I.; Leydesdorff, L.: Content-based and algorithmic classifications of journals : perspectives on the dynamics of scientific communication and indexer effects (2009) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3095) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3095,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3095, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aggregated journal-journal citation matrix - based on the Journal Citation Reports (JCR) of the Science Citation Index - can be decomposed by indexers or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two content-based classifications of journals: the ISI Subject Categories and the field/subfield classification of Glänzel and Schubert (2003). The content-based schemes allow for the attribution of more than a single category to a journal, whereas the algorithms maximize the ratio of within-category citations over between-category citations in the aggregated category-category citation matrix. By adding categories, indexers generate between-category citations, which may enrich the database, for example, in the case of inter-disciplinary developments. Algorithmic decompositions, on the other hand, are more heavily skewed towards a relatively small number of categories, while this is deliberately counter-acted upon in the case of content-based classifications. Because of the indexer effects, science policy studies and the sociology of science should be careful when using content-based classifications, which are made for bibliographic disclosure, and not for the purpose of analyzing latent structures in scientific communications. Despite the large differences among them, the four classification schemes enable us to generate surprisingly similar maps of science at the global level. Erroneous classifications are cancelled as noise at the aggregate level, but may disturb the evaluation locally.
    Type
    a
  20. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 532) [ClassicSimilarity], result of:
              0.006765375 = score(doc=532,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 532, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
    Type
    a