Search (28 results, page 2 of 2)

  • × author_ss:"Leydesdorff, L."
  • × theme_ss:"Informetrie"
  1. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3322) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3322,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3322, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3322)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.214-233
  2. Leydesdorff, L.; Heimeriks, G.: ¬The self-organization of the European information society : the case of "biotechnology" (2001) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 6524) [ClassicSimilarity], result of:
              0.007856515 = score(doc=6524,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 6524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6524)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Footnote
    Vgl. auch die Stellungnahme von P. van den Besselaar: Empirical evidence of self-organization? in: JASIST 54(2003) no.1, S.87-90.
  3. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 82) [ClassicSimilarity], result of:
              0.007856515 = score(doc=82,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.1, S.25-38
  4. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 4919) [ClassicSimilarity], result of:
              0.007856515 = score(doc=4919,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 4919, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  5. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 1131) [ClassicSimilarity], result of:
              0.007856515 = score(doc=1131,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 1131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.
  6. Bornmann, L.; Wagner, C.; Leydesdorff, L.: BRICS countries and scientific excellence : a bibliometric analysis of most frequently cited papers (2015) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 2047) [ClassicSimilarity], result of:
              0.007856515 = score(doc=2047,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 2047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    The BRICS countries (Brazil, Russia, India, China, and South Africa) are notable for their increasing participation in science and technology. The governments of these countries have been boosting their investments in research and development to become part of the group of nations doing research at a world-class level. This study investigates the development of the BRICS countries in the domain of top-cited papers (top 10% and 1% most frequently cited papers) between 1990 and 2010. To assess the extent to which these countries have become important players at the top level, we compare the BRICS countries with the top-performing countries worldwide. As the analyses of the (annual) growth rates show, with the exception of Russia, the BRICS countries have increased their output in terms of most frequently cited papers at a higher rate than the top-cited countries worldwide. By way of additional analysis, we generate coauthorship networks among authors of highly cited papers for 4 time points to view changes in BRICS participation (1995, 2000, 2005, and 2010). Here, the results show that all BRICS countries succeeded in becoming part of this network, whereby the Chinese collaboration activities focus on the US.
  7. Leydesdorff, L.; Nooy, W. de: Can "hot spots" in the sciences be mapped using the dynamics of aggregated journal-journal citation relations (2017) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3328) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3328,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3328, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3328)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.197-213
  8. Hellsten, I.; Leydesdorff, L.: Automated analysis of actor-topic networks on twitter : new approaches to the analysis of socio-semantic networks (2020) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 5610) [ClassicSimilarity], result of:
              0.007856515 = score(doc=5610,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 5610, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5610)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.1, S.3-15