Search (87 results, page 3 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Heimeriks, G.; Rotolo, D.: Journal portfolio analysis for countries, cities, and organizations : maps and comparisons (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2781) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2781,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2781, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Web of Science data, portfolio analysis in terms of journal coverage can be projected onto a base map for units of analysis such as countries, cities, universities, and firms. The units of analysis under study can be compared statistically across the 10,000+ journals. The interdisciplinarity of the portfolios is measured using Rao-Stirling diversity or Zhang et?al.'s improved measure 2D3. At the country level we find regional differentiation (e.g., Latin American or Asian countries), but also a major divide between advanced and less-developed countries. Israel and Israeli cities outperform other nations and cities in terms of diversity. Universities appear to be specifically related to firms when a number of these units are exploratively compared. The instrument is relatively simple and straightforward, and one can generalize the application to any document set retrieved from the Web of Science (WoS). Further instruction is provided online at http://www.leydesdorff.net/portfolio.
    Type
    a
  2. Leydesdorff, L.; Wagner, C,; Bornmann, L.: Replicability and the public/private divide (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3023) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3023,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3023)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Leydesdorff, L.; Rafols, I.: ¬A global map of science based on the ISI subject categories (2009) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2713) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2713,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2713, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2713)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The decomposition of scientific literature into disciplinary and subdisciplinary structures is one of the core goals of scientometrics. How can we achieve a good decomposition? The ISI subject categories classify journals included in the Science Citation Index (SCI). The aggregated journal-journal citation matrix contained in the Journal Citation Reports can be aggregated on the basis of these categories. This leads to an asymmetrical matrix (citing versus cited) that is much more densely populated than the underlying matrix at the journal level. Exploratory factor analysis of the matrix of subject categories suggests a 14-factor solution. This solution could be interpreted as the disciplinary structure of science. The nested maps of science (corresponding to 14 factors, 172 categories, and 6,164 journals) are online at http://www.leydesdorff.net/map06. Presumably, inaccuracies in the attribution of journals to the ISI subject categories average out so that the factor analysis reveals the main structures. The mapping of science could, therefore, be comprehensive and reliable on a large scale albeit imprecise in terms of the attribution of journals to the ISI subject categories.
    Type
    a
  4. Shelton, R.D.; Leydesdorff, L.: Publish or patent : bibliometric evidence for empirical trade-offs in national funding strategies (2012) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 70) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=70,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 70, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multivariate linear regression models suggest a trade-off in allocations of national research and development (R&D). Government funding and spending in the higher education sector encourage publications as a long-term research benefit. Conversely, other components such as industrial funding and spending in the business sector encourage patenting. Our results help explain why the United States trails the European Union in publications: The focus in the United States is on industrial funding-some 70% of its total R&D investment. Likewise, our results also help explain why the European Union trails the United States in patenting, since its focus on government funding is less effective than industrial funding in predicting triadic patenting. Government funding contributes negatively to patenting in a multiple regression, and this relationship is significant in the case of triadic patenting. We provide new forecasts about the relationships of the United States, the European Union, and China for publishing; these results suggest much later dates for changes than previous forecasts because Chinese growth has been slowing down since 2003. Models for individual countries might be more successful than regression models whose parameters are averaged over a set of countries because nations can be expected to differ historically in terms of the institutional arrangements and funding schemes.
    Type
    a
  5. Leydesdorff, L.; Park, H.W.; Wagner, C.: International coauthorship relations in the Social Sciences Citation Index : is internationalization leading the Network? (2014) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 1505) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=1505,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 1505, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1505)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    International coauthorship relations have increasingly shaped another dynamic in the natural and life sciences during recent decades. However, much less is known about such internationalization in the social sciences. In this study, we analyze international and domestic coauthorship relations of all citable items in the DVD version of the Social Sciences Citation Index 2011 (SSCI). Network statistics indicate 4 groups of nations: (a) an Asian-Pacific one to which all Anglo-Saxon nations (including the United Kingdom and Ireland) are attributed, (b) a continental European one including also the Latin-American countries, (c) the Scandinavian nations, and (d) a community of African nations. Within the EU-28, 11 of the EU-15 states have dominant positions. In many respects, the network parameters are not so different from the Science Citation Index. In addition to these descriptive statistics, we address the question of the relative weights of the international versus domestic networks. An information-theoretical test is proposed at the level of organizational addresses within each nation; the results are mixed, but the international dimension is more important than the national one in the aggregated sets (as in the Science Citation Index). In some countries (e.g., France), however, the national distribution is leading more than the international one. Decomposition of the United States in terms of states shows a similarly mixed result; more U.S. states are domestically oriented in the SSCI and more internationally in the SCI. The international networks have grown during the last decades in addition to the national ones but not by replacing them.
    Type
    a
  6. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 5225) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=5225,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 5225, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
    Type
    a
  7. Leydesdorff, L.: ¬The university-industry knowledge relationship : analyzing patents and the science base of technologies (2004) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 2887) [ClassicSimilarity], result of:
              0.007030784 = score(doc=2887,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 2887, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2887)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Via the Internet, information scientists can obtain costfree access to large databases in the "hidden" or "deep Web." These databases are often structured far more than the Internet domains themselves. The patent database of the U.S. Patent and Trade Office is used in this study to examine the science base of patents in terms of the literature references in these patents. Universitybased patents at the global level are compared with results when using the national economy of the Netherlands as a system of reference. Methods for accessing the online databases and for the visualization of the results are specified. The conclusion is that "biotechnology" has historically generated a model for theorizing about university-industry relations that cannot easily be generalized to other sectors and disciplines.
    Type
    a
  8. Zhou, P.; Leydesdorff, L.: ¬A comparison between the China Scientific and Technical Papers and Citations Database and the Science Citation Index in terms of journal hierarchies and interjournal citation relations (2007) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 70) [ClassicSimilarity], result of:
              0.007030784 = score(doc=70,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 70, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The journal structure in the China Scientific and Technical Papers and Citations Database (CSTPCD) is analyzed from three perspectives: the database level, the specialty level, and the institutional level (i.e., university journals vs. journals issued by the Chinese Academy of Sciences). The results are compared with those for (Chinese) journals included in the Science Citation Index (SCI). The frequency of journal-journal citation relations in the CSTPCD is an order of magnitude lower than in the SCI. Chinese journals, especially high-quality journals, prefer to cite international journals rather than domestic ones; however, Chinese journals do not get an equivalent reception from their international counterparts. The international visibility of Chinese journals is low, but varies among fields of science. Journals of the Chinese Academy of Sciences have a better reception in the international scientific community than university journals.
    Type
    a
  9. Leydesdorff, L.: Betweenness centrality as an indicator of the interdisciplinarity of scientific journals (2007) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 453) [ClassicSimilarity], result of:
              0.007030784 = score(doc=453,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 453, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=453)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In addition to science citation indicators of journals like impact and immediacy, social network analysis provides a set of centrality measures like degree, betweenness, and closeness centrality. These measures are first analyzed for the entire set of 7,379 journals included in the Journal Citation Reports of the Science Citation Index and the Social Sciences Citation Index 2004 (Thomson ISI, Philadelphia, PA), and then also in relation to local citation environments that can be considered as proxies of specialties and disciplines. Betweenness centrality is shown to be an indicator of the interdisciplinarity of journals, but only in local citation environments and after normalization; otherwise, the influence of degree centrality (size) overshadows the betweenness-centrality measure. The indicator is applied to a variety of citation environments, including policy-relevant ones like biotechnology and nanotechnology. The values of the indicator remain sensitive to the delineations of the set because of the indicator's local character. Maps showing interdisciplinarity of journals in terms of betweenness centrality can be drawn using information about journal citation environments, which is available online.
    Type
    a
  10. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 3987) [ClassicSimilarity], result of:
              0.007030784 = score(doc=3987,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 3987, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3987)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel approach to visually locate bodies of research within the sciences, both at each moment of time and dynamically. This article describes how this approach fits with other efforts to locally and globally map scientific outputs. We then show how these science overlay maps help benchmarking, explore collaborations, and track temporal changes, using examples of universities, corporations, funding agencies, and research topics. We address their conditions of application and discuss advantages, downsides, and limitations. Overlay maps especially help investigate the increasing number of scientific developments and organizations that do not fit within traditional disciplinary categories. We make these tools available online to enable researchers to explore the ongoing sociocognitive transformations of science and technology systems.
    Type
    a
  11. Leydesdorff, L.: ¬The communication of meaning and the structuration of expectations : Giddens' "structuration theory" and Luhmann's "self-organization" (2010) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4004) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4004,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4004, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4004)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The communication of meaning as distinct from (Shannon-type) information is central to Luhmann's social systems theory and Giddens' structuration theory of action. These theories share an emphasis on reflexivity, but focus on meaning along a divide between interhuman communication and intentful action as two different systems of reference. Recombining these two theories into a theory about the structuration of expectations, interactions, organization, and self-organization of intentional communications can be simulated based on algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter, which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific articles.
    Type
    a
  12. Leydesdorff, L.; Rafols, I.: Local emergence and global diffusion of research technologies : an exploration of patterns of network formation (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4445) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4445,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4445, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4445)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Grasping the fruits of "emerging technologies" is an objective of many government priority programs in a knowledge-based and globalizing economy. We use the publication records (in the Science Citation Index) of two emerging technologies to study the mechanisms of diffusion in the case of two innovation trajectories: small interference RNA (siRNA) and nanocrystalline solar cells (NCSC). Methods for analyzing and visualizing geographical and cognitive diffusion are specified as indicators of different dynamics. Geographical diffusion is illustrated with overlays to Google Maps; cognitive diffusion is mapped using an overlay to a map based on the ISI subject categories. The evolving geographical networks show both preferential attachment and small-world characteristics. The strength of preferential attachment decreases over time while the network evolves into an oligopolistic control structure with small-world characteristics. The transition from disciplinary-oriented ("Mode 1") to transfer-oriented ("Mode 2") research is suggested as the crucial difference in explaining the different rates of diffusion between siRNA and NCSC.
    Type
    a
  13. Leydesdorff, L.; Bornmann, L.; Mutz, R.; Opthof, T.: Turning the tables on citation analysis one more time : principles for comparing sets of documents (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4485) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4485,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4485, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4485)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We submit newly developed citation impact indicators based not on arithmetic averages of citations but on percentile ranks. Citation distributions are-as a rule-highly skewed and should not be arithmetically averaged. With percentile ranks, the citation score of each paper is rated in terms of its percentile in the citation distribution. The percentile ranks approach allows for the formulation of a more abstract indicator scheme that can be used to organize and/or schematize different impact indicators according to three degrees of freedom: the selection of the reference sets, the evaluation criteria, and the choice of whether or not to define the publication sets as independent. Bibliometric data of seven principal investigators (PIs) of the Academic Medical Center of the University of Amsterdam are used as an exemplary dataset. We demonstrate that the proposed family indicators [R(6), R(100), R(6, k), R(100, k)] are an improvement on averages-based indicators because one can account for the shape of the distributions of citations over papers.
    Type
    a
  14. Leydesdorff, L.; Bornmann, L.: Mapping (USPTO) patent data using overlays to Google Maps (2012) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 288) [ClassicSimilarity], result of:
              0.007030784 = score(doc=288,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 288, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=288)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A technique is developed using patent information available online (at the U.S. Patent and Trademark Office) for the generation of Google Maps. The overlays indicate both the quantity and the quality of patents at the city level. This information is relevant for research questions in technology analysis, innovation studies, and evolutionary economics, as well as economic geography. The resulting maps can also be relevant for technological innovation policies and research and development management, because the U.S. market can be considered the leading market for patenting and patent competition. In addition to the maps, the routines provide quantitative data about the patents for statistical analysis. The cities on the map are colored according to the results of significance tests. The overlays are explored for the Netherlands as a "national system of innovations" and further elaborated in two cases of emerging technologies: ribonucleic acid interference (RNAi) and nanotechnology.
    Type
    a
  15. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1108) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1108,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1108, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Type
    a
  16. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 3322) [ClassicSimilarity], result of:
              0.007030784 = score(doc=3322,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 3322, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3322)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines the use of scientometric overlay mapping as a tool of "strategic intelligence" to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical, social, and cognitive spaces. To do so, we longitudinally analyze (with publication and patent data) three case studies of emerging technologies in the medical domain. These are RNA interference (RNAi), human papillomavirus (HPV) testing technologies for cervical cancer, and thiopurine methyltransferase (TPMT) genetic testing. Given the flexibility (i.e., adaptability to different sources of data) and granularity (i.e., applicability across multiple levels of data aggregation) of overlay mapping techniques, we argue that these techniques can favor the integration and comparison of results from different contexts and cases, thus potentially functioning as a platform for "distributed" strategic intelligence for analysts and decision makers.
    Type
    a
  17. Rafols, I.; Leydesdorff, L.: Content-based and algorithmic classifications of journals : perspectives on the dynamics of scientific communication and indexer effects (2009) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3095) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3095,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3095, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3095)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aggregated journal-journal citation matrix - based on the Journal Citation Reports (JCR) of the Science Citation Index - can be decomposed by indexers or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two content-based classifications of journals: the ISI Subject Categories and the field/subfield classification of Glänzel and Schubert (2003). The content-based schemes allow for the attribution of more than a single category to a journal, whereas the algorithms maximize the ratio of within-category citations over between-category citations in the aggregated category-category citation matrix. By adding categories, indexers generate between-category citations, which may enrich the database, for example, in the case of inter-disciplinary developments. Algorithmic decompositions, on the other hand, are more heavily skewed towards a relatively small number of categories, while this is deliberately counter-acted upon in the case of content-based classifications. Because of the indexer effects, science policy studies and the sociology of science should be careful when using content-based classifications, which are made for bibliographic disclosure, and not for the purpose of analyzing latent structures in scientific communications. Despite the large differences among them, the four classification schemes enable us to generate surprisingly similar maps of science at the global level. Erroneous classifications are cancelled as noise at the aggregate level, but may disturb the evaluation locally.
    Type
    a
  18. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 532) [ClassicSimilarity], result of:
              0.006765375 = score(doc=532,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 532, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
    Type
    a
  19. Leydesdorff, L.; Moya-Anegón, F. de; Guerrero-Bote, V.P.: Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012) (2015) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1814) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1814,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1814, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1814)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Scopus data, we construct a global map of science based on aggregated journal-journal citations from 1996-2012 (N of journals?=?20,554). This base map enables users to overlay downloads from Scopus interactively. Using a single year (e.g., 2012), results can be compared with mappings based on the Journal Citation Reports at the Web of Science (N?=?10,936). The Scopus maps are more detailed at both the local and global levels because of their greater coverage, including, for example, the arts and humanities. The base maps can be interactively overlaid with journal distributions in sets downloaded from Scopus, for example, for the purpose of portfolio analysis. Rao-Stirling diversity can be used as a measure of interdisciplinarity in the sets under study. Maps at the global and the local level, however, can be very different because of the different levels of aggregation involved. Two journals, for example, can both belong to the humanities in the global map, but participate in different specialty structures locally. The base map and interactive tools are available online (with instructions) at http://www.leydesdorff.net/scopus_ovl.
    Type
    a
  20. Bornmann, L.; Wagner, C.; Leydesdorff, L.: BRICS countries and scientific excellence : a bibliometric analysis of most frequently cited papers (2015) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 2047) [ClassicSimilarity], result of:
              0.006765375 = score(doc=2047,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 2047, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The BRICS countries (Brazil, Russia, India, China, and South Africa) are notable for their increasing participation in science and technology. The governments of these countries have been boosting their investments in research and development to become part of the group of nations doing research at a world-class level. This study investigates the development of the BRICS countries in the domain of top-cited papers (top 10% and 1% most frequently cited papers) between 1990 and 2010. To assess the extent to which these countries have become important players at the top level, we compare the BRICS countries with the top-performing countries worldwide. As the analyses of the (annual) growth rates show, with the exception of Russia, the BRICS countries have increased their output in terms of most frequently cited papers at a higher rate than the top-cited countries worldwide. By way of additional analysis, we generate coauthorship networks among authors of highly cited papers for 4 time points to view changes in BRICS participation (1995, 2000, 2005, and 2010). Here, the results show that all BRICS countries succeeded in becoming part of this network, whereby the Chinese collaboration activities focus on the US.
    Type
    a