Search (87 results, page 5 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Bensman, S.J.; Leydesdorff, L.: Definition and identification of journals as bibliographic and subject entities : librarianship versus ISI Journal Citation Reports methods and their effect on citation measures (2009) 0.00
    0.003529194 = product of:
      0.008822985 = sum of:
        0.004086692 = weight(_text_:a in 2840) [ClassicSimilarity], result of:
          0.004086692 = score(doc=2840,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.07643694 = fieldWeight in 2840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2840)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2840) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2840,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2840, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2840)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.6, S.1097-1117
    Type
    a
  2. Leydesdorff, L.: How are new citation-based journal indicators adding to the bibliometric toolbox? (2009) 0.00
    0.003529194 = product of:
      0.008822985 = sum of:
        0.004086692 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
          0.004086692 = score(doc=2929,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.07643694 = fieldWeight in 2929, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2929)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2929) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2929,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2929, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1327-1336
    Type
    a
  3. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    0.0035052493 = product of:
      0.008763123 = sum of:
        0.0048162127 = weight(_text_:a in 1131) [ClassicSimilarity], result of:
          0.0048162127 = score(doc=1131,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.090081796 = fieldWeight in 1131, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 1131) [ClassicSimilarity], result of:
              0.007893822 = score(doc=1131,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 1131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2573-2586
    Type
    a
  4. Leydesdorff, L.; Moya-Anegón, F. de; Nooy, W. de: Aggregated journal-journal citation relations in scopus and web of science matched and compared in terms of networks, maps, and interactive overlays (2016) 0.00
    0.002940995 = product of:
      0.007352487 = sum of:
        0.0034055763 = weight(_text_:a in 3090) [ClassicSimilarity], result of:
          0.0034055763 = score(doc=3090,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.06369744 = fieldWeight in 3090, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3090)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 3090) [ClassicSimilarity], result of:
              0.007893822 = score(doc=3090,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 3090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3090)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.9, S.2194-2211
    Type
    a
  5. Leydesdorff, L.: Theories of citation? (1999) 0.00
    0.0019071229 = product of:
      0.009535614 = sum of:
        0.009535614 = weight(_text_:a in 5130) [ClassicSimilarity], result of:
          0.009535614 = score(doc=5130,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 5130, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5130)
      0.2 = coord(1/5)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication
    Footnote
    Lead paper in a thematic issue devoted to 'Theories of citation?'
    Type
    a
  6. Leydesdorff, L.: ¬The generation of aggregated journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index (1994) 0.00
    0.001651617 = product of:
      0.008258085 = sum of:
        0.008258085 = weight(_text_:a in 8281) [ClassicSimilarity], result of:
          0.008258085 = score(doc=8281,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 8281, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=8281)
      0.2 = coord(1/5)
    
    Abstract
    Describes a method for the generation of journal-journal citation maps on the basis of the CD-ROM version of the Science Citation Index. Discusses sources of potential error from this data. Offers strategies to counteract such errors. Analyzes a number of scientometric periodical mappings in relation to mappings from previous studies which have used tape data and/or data from ISI's Journal Citation Reports. Compares the quality of these mappings with the quality of those for previous years in order to demonstrate the use of such mappings as indicators for dynamic developments in the sciences
    Type
    a
  7. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.00
    0.0016346768 = product of:
      0.008173384 = sum of:
        0.008173384 = weight(_text_:a in 4427) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4427,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4427, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4427)
      0.2 = coord(1/5)
    
    Abstract
    The aggregated journal-journal citation matrix derived from Journal Citation Reports 2001 can be decomposed into a unique subject classification using the graph-analytical algorithm of bi-connected components. This technique was recently incorporated in software tools for social network analysis. The matrix can be assessed in terms of its decomposability using articulation points which indicate overlap between the components. The articulation points of this set did not exhibit a next-order network of "general science" journals. However, the clusters differ in size and in terms of the internal density of their relations. A full classification of the journals is provided in the Appendix. The clusters can also be extracted and mapped for the visualization.
    Type
    a