Search (87 results, page 1 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.05
    0.04695951 = sum of:
      0.043063544 = product of:
        0.17225417 = sum of:
          0.17225417 = weight(_text_:authors in 3231) [ClassicSimilarity], result of:
            0.17225417 = score(doc=3231,freq=16.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.7123147 = fieldWeight in 3231, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3231)
        0.25 = coord(1/4)
      0.0038959642 = product of:
        0.0077919285 = sum of:
          0.0077919285 = weight(_text_:a in 3231) [ClassicSimilarity], result of:
            0.0077919285 = score(doc=3231,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.12739488 = fieldWeight in 3231, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3231)
        0.5 = coord(1/2)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
    Type
    a
  2. Leydesdorff, L.: Theories of citation? (1999) 0.04
    0.03559883 = sum of:
      0.030144477 = product of:
        0.12057791 = sum of:
          0.12057791 = weight(_text_:authors in 5130) [ClassicSimilarity], result of:
            0.12057791 = score(doc=5130,freq=4.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.49862027 = fieldWeight in 5130, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5130)
        0.25 = coord(1/4)
      0.0054543503 = product of:
        0.0109087005 = sum of:
          0.0109087005 = weight(_text_:a in 5130) [ClassicSimilarity], result of:
            0.0109087005 = score(doc=5130,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.17835285 = fieldWeight in 5130, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5130)
        0.5 = coord(1/2)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication
    Footnote
    Lead paper in a thematic issue devoted to 'Theories of citation?'
    Type
    a
  3. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.03
    0.027286544 = product of:
      0.05457309 = sum of:
        0.05457309 = sum of:
          0.011451749 = weight(_text_:a in 1621) [ClassicSimilarity], result of:
            0.011451749 = score(doc=1621,freq=12.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.18723148 = fieldWeight in 1621, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=1621)
          0.043121338 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
            0.043121338 = score(doc=1621,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 1621, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1621)
      0.5 = coord(1/2)
    
    Abstract
    The relationship between the "knowledge base" and the "globalization" of communication systems is discussed from the perspective of communication theory. I argue that inter-human communication takes place at two levels. At the first level information is exchanged and provided with meaning and at the second level meaning can reflexively be communicated. Human language can be considered as the evolutionary achievement which enables us to use these two channels of communication simultaneously. Providing meaning with hindsight is a recursive operation: a meaning that makes a difference can be considered as knowledge. If the production of knowledge is socially organized, the perspective of hindsight can further be codified. This adds globalization to the historically stabilized patterns of communications. Globalization can be expected to transform the communications in an evolutionary mode. However, the self-organization of a knowledge-based society remains an expectation with the status of a hypothesis.
    Date
    22. 5.2003 19:48:04
    Type
    a
  4. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.03
    0.027286544 = product of:
      0.05457309 = sum of:
        0.05457309 = sum of:
          0.011451749 = weight(_text_:a in 2761) [ClassicSimilarity], result of:
            0.011451749 = score(doc=2761,freq=12.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.18723148 = fieldWeight in 2761, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
          0.043121338 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
            0.043121338 = score(doc=2761,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 2761, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
      0.5 = coord(1/2)
    
    Abstract
    International co-authorship relations and university-industry-government (Triple Helix) relations have hitherto been studied separately. Using Japanese publication data for the 1981-2004 period, we were able to study both kinds of relations in a single design. In the Japanese file, 1,277,030 articles with at least one Japanese address were attributed to the three sectors, and we know additionally whether these papers were coauthored internationally. Using the mutual information in three and four dimensions, respectively, we show that the Japanese Triple-Helix system has been continuously eroded at the national level. However, since the mid-1990s, international coauthorship relations have contributed to a reduction of the uncertainty at the national level. In other words, the national publication system of Japan has developed a capacity to retain surplus value generated internationally. In a final section, we compare these results with an analysis based on similar data for Canada. A relative uncoupling of national university-industry-government relations because of international collaborations is indicated in both countries.
    Date
    22. 3.2009 19:07:20
    Type
    a
  5. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.03
    0.026787654 = product of:
      0.053575307 = sum of:
        0.053575307 = sum of:
          0.01045397 = weight(_text_:a in 4681) [ClassicSimilarity], result of:
            0.01045397 = score(doc=4681,freq=10.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.1709182 = fieldWeight in 4681, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.043121338 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.043121338 = score(doc=4681,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.5 = coord(1/2)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Type
    a
  6. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.02
    0.024866505 = product of:
      0.04973301 = sum of:
        0.04973301 = sum of:
          0.006611671 = weight(_text_:a in 4460) [ClassicSimilarity], result of:
            0.006611671 = score(doc=4460,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.10809815 = fieldWeight in 4460, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4460)
          0.043121338 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
            0.043121338 = score(doc=4460,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.23214069 = fieldWeight in 4460, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4460)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citations can be used for mapping the intellectual organization of the sciences in terms of specialties because the latter can be considered as interreading communities. Can the journal-journal citations also be used as early indicators of change by comparing the files for two subsequent years? Probabilistic entropy measures enable us to analyze changes in large datasets at different levels of aggregation and in considerable detail. Compares Journal Citation Reports of the Social Science Citation Index for 1999 with similar data for 1998 and analyzes the differences using these measures. Compares the various indicators with similar developments in the Science Citation Index. Specialty formation seems a more important mechanism in the development of the social sciences than in the natural and life sciences, but the developments in the social sciences are volatile. The use of aggregate statistics based on the Science Citation Index is ill-advised in the case of the social sciences because of structural differences in the underlying dynamics.
    Date
    6.11.2005 19:02:22
    Type
    a
  7. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.02
    0.024454964 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 4767) [ClassicSimilarity], result of:
            0.07308125 = score(doc=4767,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 4767, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=4767)
        0.25 = coord(1/4)
      0.0061846524 = product of:
        0.012369305 = sum of:
          0.012369305 = weight(_text_:a in 4767) [ClassicSimilarity], result of:
            0.012369305 = score(doc=4767,freq=14.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.20223314 = fieldWeight in 4767, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4767)
        0.5 = coord(1/2)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
    Type
    a
  8. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.02
    0.024127286 = product of:
      0.04825457 = sum of:
        0.04825457 = sum of:
          0.012320121 = weight(_text_:a in 4463) [ClassicSimilarity], result of:
            0.012320121 = score(doc=4463,freq=20.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.20142901 = fieldWeight in 4463, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
          0.035934452 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
            0.035934452 = score(doc=4463,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.19345059 = fieldWeight in 4463, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
      0.5 = coord(1/2)
    
    Abstract
    This article considers the relationships among meaning generation, selection, and the dynamics of discourse from a variety of perspectives ranging from information theory and biology to sociology. Following Husserl's idea of a horizon of meanings in intersubjective communication, we propose a way in which, using Shannon's equations, the generation and selection of meanings from a horizon of possibilities can be considered probabilistically. The information-theoretical dynamics we articulate considers a process of meaning generation within cultural evolution: information is imbued with meaning, and through this process, the number of options for the selection of meaning in discourse proliferates. The redundancy of possible meanings contributes to a codification of expectations within the discourse. Unlike hardwired DNA, the codes of nonbiological systems can coevolve with the variations. Spanning horizons of meaning, the codes structure the communications as selection environments that shape discourses. Discursive knowledge can be considered as meta-coded communication that enables us to translate among differently coded communications. The dynamics of discursive knowledge production can thus infuse the historical dynamics with a cultural evolution by adding options, that is, by increasing redundancy. A calculus of redundancy is presented as an indicator whereby these dynamics of discourse and meaning may be explored empirically.
    Date
    29. 9.2018 11:22:09
    Type
    a
  9. Rotolo, D.; Leydesdorff, L.: Matching Medline/PubMed data with Web of Science: A routine in R language (2015) 0.02
    0.02294547 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 2224) [ClassicSimilarity], result of:
            0.07308125 = score(doc=2224,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 2224, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=2224)
        0.25 = coord(1/4)
      0.0046751574 = product of:
        0.009350315 = sum of:
          0.009350315 = weight(_text_:a in 2224) [ClassicSimilarity], result of:
            0.009350315 = score(doc=2224,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15287387 = fieldWeight in 2224, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2224)
        0.5 = coord(1/2)
    
    Abstract
    We present a novel routine, namely medlineR, based on the R language, that allows the user to match data from Medline/PubMed with records indexed in the ISI Web of Science (WoS) database. The matching allows exploiting the rich and controlled vocabulary of medical subject headings (MeSH) of Medline/PubMed with additional fields of WoS. The integration provides data (e.g., citation data, list of cited reference, list of the addresses of authors' host organizations, WoS subject categories) to perform a variety of scientometric analyses. This brief communication describes medlineR, the method on which it relies, and the steps the user should follow to perform the matching across the two databases. To demonstrate the differences from Leydesdorff and Opthof (Journal of the American Society for Information Science and Technology, 64(5), 1076-1080), we conclude this artcle by testing the routine on the MeSH category "Burgada syndrome."
    Type
    a
  10. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.02
    0.022738788 = product of:
      0.045477577 = sum of:
        0.045477577 = sum of:
          0.0095431255 = weight(_text_:a in 3089) [ClassicSimilarity], result of:
            0.0095431255 = score(doc=3089,freq=12.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15602624 = fieldWeight in 3089, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
          0.035934452 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
            0.035934452 = score(doc=3089,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.19345059 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
      0.5 = coord(1/2)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
    Type
    a
  11. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.022323046 = product of:
      0.04464609 = sum of:
        0.04464609 = sum of:
          0.008711642 = weight(_text_:a in 4186) [ClassicSimilarity], result of:
            0.008711642 = score(doc=4186,freq=10.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.14243183 = fieldWeight in 4186, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.035934452 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.035934452 = score(doc=4186,freq=2.0), product of:
              0.1857552 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.053045183 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Type
    a
  12. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.02
    0.021576148 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 3704) [ClassicSimilarity], result of:
            0.07308125 = score(doc=3704,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 3704, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=3704)
        0.25 = coord(1/4)
      0.0033058354 = product of:
        0.006611671 = sum of:
          0.006611671 = weight(_text_:a in 3704) [ClassicSimilarity], result of:
            0.006611671 = score(doc=3704,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.10809815 = fieldWeight in 3704, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3704)
        0.5 = coord(1/2)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Type
    a
  13. Zhou, Q.; Leydesdorff, L.: ¬The normalization of occurrence and co-occurrence matrices in bibliometrics using Cosine similarities and Ochiai coefficients (2016) 0.02
    0.021576148 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 3161) [ClassicSimilarity], result of:
            0.07308125 = score(doc=3161,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 3161, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=3161)
        0.25 = coord(1/4)
      0.0033058354 = product of:
        0.006611671 = sum of:
          0.006611671 = weight(_text_:a in 3161) [ClassicSimilarity], result of:
            0.006611671 = score(doc=3161,freq=4.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.10809815 = fieldWeight in 3161, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3161)
        0.5 = coord(1/2)
    
    Abstract
    We prove that Ochiai similarity of the co-occurrence matrix is equal to cosine similarity in the underlying occurrence matrix. Neither the cosine nor the Pearson correlation should be used for the normalization of co-occurrence matrices because the similarity is then normalized twice, and therefore overestimated; the Ochiai coefficient can be used instead. Results are shown using a small matrix (5 cases, 4 variables) for didactic reasons, and also Ahlgren et?al.'s (2003) co-occurrence matrix of 24 authors in library and information sciences. The overestimation is shown numerically and will be illustrated using multidimensional scaling and cluster dendograms. If the occurrence matrix is not available (such as in internet research or author cocitation analysis) using Ochiai for the normalization is preferable to using the cosine.
    Type
    a
  14. Baumgartner, S.E.; Leydesdorff, L.: Group-based trajectory modeling (GBTM) of citations in scholarly literature : dynamic qualities of "transient" and "sticky knowledge claims" (2014) 0.02
    0.021069206 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 1241) [ClassicSimilarity], result of:
            0.060901042 = score(doc=1241,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 1241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1241)
        0.25 = coord(1/4)
      0.0058439467 = product of:
        0.011687893 = sum of:
          0.011687893 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
            0.011687893 = score(doc=1241,freq=18.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.19109234 = fieldWeight in 1241, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1241)
        0.5 = coord(1/2)
    
    Abstract
    Group-based trajectory modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (virology, 24 journals) to distinguish among the developmental trajectories in subpopulations. Can citation patterns of highly-cited papers be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than 10 years after publication and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after 2 or 3 years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, fifth-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than 10%. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not allow us to define a percentage of highly cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations but only the levels of aggregated citations (which are field-specific).
    Type
    a
  15. Leydesdorff, L.; Bihui, J.: Mapping the Chinese Science Citation Database in terms of aggregated journal-journal citation relations (2005) 0.02
    0.02060789 = sum of:
      0.018270312 = product of:
        0.07308125 = sum of:
          0.07308125 = weight(_text_:authors in 4813) [ClassicSimilarity], result of:
            0.07308125 = score(doc=4813,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.30220953 = fieldWeight in 4813, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.046875 = fieldNorm(doc=4813)
        0.25 = coord(1/4)
      0.0023375787 = product of:
        0.0046751574 = sum of:
          0.0046751574 = weight(_text_:a in 4813) [ClassicSimilarity], result of:
            0.0046751574 = score(doc=4813,freq=2.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.07643694 = fieldWeight in 4813, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4813)
        0.5 = coord(1/2)
    
    Abstract
    Methods developed for mapping the journal structure contained in aggregated journal-journal citations in the Science Citation Index (SCI; Thomson ISI, 2002) are applied to the Chinese Science Citation Database of the Chinese Academy of Sciences. This database covered 991 journals in 2001, of which only 37 originally had English titles; only 31 of which were covered by the SCI. Using factor-analytical and graph-analytical techniques, the authors show that the journal relations are dually structured. The main structure is the intellectual organization of the journals in journal groups (as in the international SCI), but the university-based journals provide an institutional layer that orients this structure towards practical ends (e.g., agriculture). This mechanism of integration is further distinguished from the role of general science journals. The Chinese Science Citation Database thus exhibits the characteristics of "Mode 2" or transdisciplinary science in the production of scientific knowledge more than its Western counterpart does. The contexts of application lead to correlation among the components.
    Type
    a
  16. Ye, F.Y.; Leydesdorff, L.: ¬The "academic trace" of the performance matrix : a mathematical synthesis of the h-index and the integrated impact indicator (I3) (2014) 0.02
    0.020379137 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 1237) [ClassicSimilarity], result of:
            0.060901042 = score(doc=1237,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 1237, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1237)
        0.25 = coord(1/4)
      0.0051538767 = product of:
        0.010307753 = sum of:
          0.010307753 = weight(_text_:a in 1237) [ClassicSimilarity], result of:
            0.010307753 = score(doc=1237,freq=14.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.1685276 = fieldWeight in 1237, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1237)
        0.5 = coord(1/2)
    
    Abstract
    The h-index provides us with 9 natural classes which can be written as a matrix of 3 vectors. The 3 vectors are: X = (X1, X2, X3) and indicates publication distribution in the h-core, the h-tail, and the uncited ones, respectively; Y = (Y1, Y2, Y3) denotes the citation distribution of the h-core, the h-tail and the so-called "excess" citations (above the h-threshold), respectively; and Z = (Z1, Z2, Z3) = (Y1-X1, Y2-X2, Y3-X3). The matrix V = (X,Y,Z)T constructs a measure of academic performance, in which the 9 numbers can all be provided with meanings in different dimensions. The "academic trace" tr(V) of this matrix follows naturally, and contributes a unique indicator for total academic achievements by summarizing and weighting the accumulation of publications and citations. This measure can also be used to combine the advantages of the h-index and the integrated impact indicator (I3) into a single number with a meaningful interpretation of the values. We illustrate the use of tr(V) for the cases of 2 journal sets, 2 universities, and ourselves as 2 individual authors.
    Type
    a
  17. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.02
    0.019996824 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 82) [ClassicSimilarity], result of:
            0.060901042 = score(doc=82,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 82, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=82)
        0.25 = coord(1/4)
      0.0047715628 = product of:
        0.0095431255 = sum of:
          0.0095431255 = weight(_text_:a in 82) [ClassicSimilarity], result of:
            0.0095431255 = score(doc=82,freq=12.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.15602624 = fieldWeight in 82, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=82)
        0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
    Type
    a
  18. Bornmann, L.; Wagner, C.; Leydesdorff, L.: BRICS countries and scientific excellence : a bibliometric analysis of most frequently cited papers (2015) 0.02
    0.019121224 = sum of:
      0.0152252605 = product of:
        0.060901042 = sum of:
          0.060901042 = weight(_text_:authors in 2047) [ClassicSimilarity], result of:
            0.060901042 = score(doc=2047,freq=2.0), product of:
              0.24182312 = queryWeight, product of:
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.053045183 = queryNorm
              0.25184128 = fieldWeight in 2047, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.558814 = idf(docFreq=1258, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2047)
        0.25 = coord(1/4)
      0.0038959642 = product of:
        0.0077919285 = sum of:
          0.0077919285 = weight(_text_:a in 2047) [ClassicSimilarity], result of:
            0.0077919285 = score(doc=2047,freq=8.0), product of:
              0.06116359 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.053045183 = queryNorm
              0.12739488 = fieldWeight in 2047, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2047)
        0.5 = coord(1/2)
    
    Abstract
    The BRICS countries (Brazil, Russia, India, China, and South Africa) are notable for their increasing participation in science and technology. The governments of these countries have been boosting their investments in research and development to become part of the group of nations doing research at a world-class level. This study investigates the development of the BRICS countries in the domain of top-cited papers (top 10% and 1% most frequently cited papers) between 1990 and 2010. To assess the extent to which these countries have become important players at the top level, we compare the BRICS countries with the top-performing countries worldwide. As the analyses of the (annual) growth rates show, with the exception of Russia, the BRICS countries have increased their output in terms of most frequently cited papers at a higher rate than the top-cited countries worldwide. By way of additional analysis, we generate coauthorship networks among authors of highly cited papers for 4 time points to view changes in BRICS participation (1995, 2000, 2005, and 2010). Here, the results show that all BRICS countries succeeded in becoming part of this network, whereby the Chinese collaboration activities focus on the US.
    Type
    a
  19. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.00
    0.0033740045 = product of:
      0.006748009 = sum of:
        0.006748009 = product of:
          0.013496018 = sum of:
            0.013496018 = weight(_text_:a in 1200) [ClassicSimilarity], result of:
              0.013496018 = score(doc=1200,freq=24.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.22065444 = fieldWeight in 1200, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Type
    a
  20. Leydesdorff, L.; Ahrweiler, P.: In search of a network theory of innovations : relations, positions, and perspectives (2014) 0.00
    0.0033740045 = product of:
      0.006748009 = sum of:
        0.006748009 = product of:
          0.013496018 = sum of:
            0.013496018 = weight(_text_:a in 1531) [ClassicSimilarity], result of:
              0.013496018 = score(doc=1531,freq=24.0), product of:
                0.06116359 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.053045183 = queryNorm
                0.22065444 = fieldWeight in 1531, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1531)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a complement to Nelson and Winter's (1977) article titled "In Search of a Useful Theory of Innovation," a sociological perspective on innovation networks can be elaborated using Luhmann's social systems theory, on the one hand, and Latour's "sociology of translations," on the other. Because of a common focus on communication, these perspectives can be combined as a set of methodologies. Latour's sociology of translations specifies a mechanism for generating variation in relations ("associations"), whereas Luhmann's systems perspective enables the specification of (functionally different) selection environments such as markets, professional organizations, and political control. Selection environments can be considered as mechanisms of social coordination that can self-organize-beyond the control of human agency-into regimes in terms of interacting codes of communication. Unlike relatively globalized regimes, technological trajectories are organized locally in "landscapes." A resulting "duality of structure" (Giddens, 1979) between the historical organization of trajectories and evolutionary self-organization at the regime level can be expected to drive innovation cycles. Reflexive translations add a third layer of perspectives to (a) the relational analysis of observable links that shape trajectories and (b) the positional analysis of networks in terms of latent dimensions. These three operations can be studied in a single framework, but using different methodologies. Latour's first-order associations can then be analytically distinguished from second-order translations in terms of requiring other communicative competencies. The resulting operations remain infrareflexively nested, and can therefore be used for innovative reconstructions of previously constructed boundaries.
    Type
    a