Search (2 results, page 1 of 1)

  • × author_ss:"Li, G."
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Xu, Y.; Li, G.; Mou, L.; Lu, Y.: Learning non-taxonomic relations on demand for ontology extension (2014) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2961) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2961,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2961, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2961)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Learning non-taxonomic relations becomes an important research topic in ontology extension. Most of the existing learning approaches are mainly based on expert crafted corpora. These approaches are normally domain-specific and the corpora acquisition is laborious and costly. On the other hand, based on the static corpora, it is not able to meet personalized needs of semantic relations discovery for various taxonomies. In this paper, we propose a novel approach for learning non-taxonomic relations on demand. For any supplied taxonomy, it can focus on the segment of the taxonomy and collect information dynamically about the taxonomic concepts by using Wikipedia as a learning source. Based on the newly generated corpus, non-taxonomic relations are acquired through three steps: a) semantic relatedness detection; b) relations extraction between concepts; and c) relations generalization within a hierarchy. The proposed approach is evaluated on three different predefined taxonomies and the experimental results show that it is effective in capturing non-taxonomic relations as needed and has good potential for the ontology extension on demand.
    Type
    a
  2. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1205) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1205,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1205, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
    Type
    a