Search (6 results, page 1 of 1)

  • × author_ss:"Li, J."
  • × language_ss:"e"
  • × year_i:[2010 TO 2020}
  1. Li, J.; Sun, A.; Xing, Z.: To do or not to do : distill crowdsourced negative caveats to augment api documentation (2018) 0.02
    0.016938202 = product of:
      0.06775281 = sum of:
        0.06775281 = weight(_text_:term in 4575) [ClassicSimilarity], result of:
          0.06775281 = score(doc=4575,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.309317 = fieldWeight in 4575, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.046875 = fieldNorm(doc=4575)
      0.25 = coord(1/4)
    
    Abstract
    Negative caveats of application programming interfaces (APIs) are about "how not to use an API," which are often absent from the official API documentation. When these caveats are overlooked, programming errors may emerge from misusing APIs, leading to heavy discussions on Q&A websites like Stack Overflow. If the overlooked caveats could be mined from these discussions, they would be beneficial for programmers to avoid misuse of APIs. However, it is challenging because the discussions are informal, redundant, and diverse. For this, for example, we propose Disca, a novel approach for automatically Distilling desirable API negative caveats from unstructured Q&A discussions. Through sentence selection and prominent term clustering, Disca ensures that distilled caveats are context-independent, prominent, semantically diverse, and nonredundant. Quantitative evaluation in our experiments shows that the proposed Disca significantly outperforms four text-summarization techniques. We also show that the distilled API negative caveats could greatly augment API documentation through qualitative analysis.
  2. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.01
    0.009880973 = product of:
      0.039523892 = sum of:
        0.039523892 = product of:
          0.079047784 = sum of:
            0.079047784 = weight(_text_:assessment in 4445) [ClassicSimilarity], result of:
              0.079047784 = score(doc=4445,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30499613 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4445)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Citations in scientific literature are important both for tracking the historical development of scientific ideas and for forecasting research trends. However, the diffusion mechanisms underlying the citation process remain poorly understood, despite the frequent and longstanding use of citation counts for assessment purposes within the scientific community. Here, we extend the study of citation dynamics to a more general diffusion process to understand how citation growth associates with different diffusion patterns. Using a classic diffusion model, we quantify and illustrate specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of citation counts. Experiments reveal a positive relation between the "low p and low q" pattern and high scientific impact. A sharp citation peak produced by rapid change of citation counts, however, has a negative effect on future impact. In addition, we have suggested a simple indicator, saturation level, to roughly estimate an individual article's current stage in the life cycle and its potential to attract future attention. The proposed approach can also be extended to higher levels of aggregation (e.g., individual scientists, journals, institutions), providing further insights into the practice of scientific evaluation.
  3. Zhu, Q.; Kong, X.; Hong, S.; Li, J.; He, Z.: Global ontology research progress : a bibliometric analysis (2015) 0.01
    0.005621679 = product of:
      0.022486717 = sum of:
        0.022486717 = product of:
          0.044973433 = sum of:
            0.044973433 = weight(_text_:22 in 2590) [ClassicSimilarity], result of:
              0.044973433 = score(doc=2590,freq=4.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.27358043 = fieldWeight in 2590, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2590)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
    17. 9.2018 18:22:23
  4. Li, J.; Shi, D.: Sleeping beauties in genius work : when were they awakened? (2016) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 2647) [ClassicSimilarity], result of:
              0.038161222 = score(doc=2647,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 2647, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2647)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 14:13:32
  5. Zhao, S.X.; Zhang, P.L.; Li, J.; Tan, A.M.; Ye, F.Y.: Abstracting the core subnet of weighted networks based on link strengths (2014) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 1256) [ClassicSimilarity], result of:
              0.039952483 = score(doc=1256,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 1256, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1256)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Most measures of networks are based on the nodes, although links are also elementary units in networks and represent interesting social or physical connections. In this work we suggest an option for exploring networks, called the h-strength, with explicit focus on links and their strengths. The h-strength and its extensions can naturally simplify a complex network to a small and concise subnetwork (h-subnet) but retains the most important links with its core structure. Its applications in 2 typical information networks, the paper cocitation network of a topic (the h-index) and 5 scientific collaboration networks in the field of "water resources," suggest that h-strength and its extensions could be a useful choice for abstracting, simplifying, and visualizing a complex network. Moreover, we observe that the 2 informetric models, the Glänzel-Schubert model and the Hirsch model, roughly hold in the context of the h-strength for the collaboration networks.
  6. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 3441) [ClassicSimilarity], result of:
              0.028250674 = score(doc=3441,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 3441, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3441)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.