Search (3 results, page 1 of 1)

  • × author_ss:"Li, Y."
  1. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.01
    0.010901945 = product of:
      0.02180389 = sum of:
        0.02180389 = product of:
          0.04360778 = sum of:
            0.04360778 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.04360778 = score(doc=1291,freq=4.0), product of:
                0.15939656 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045518078 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  2. Zhang, Y.; Li, Y.: ¬A user-centered functional metadata evaluation of moving image collections (2008) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 1884) [ClassicSimilarity], result of:
              0.031563994 = score(doc=1884,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 1884, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article, the authors report a series of evaluations of two metadata schemes developed for Moving Image Collections (MIC), an integrated online catalog of moving images. Through two online surveys and one experiment spanning various stages of metadata implementation, the MIC evaluation team explored a user-centered approach in which the four generic user tasks suggested by IFLA FRBR (International Association of Library Associations Functional Requirement for Bibliographic Records) were embedded in data collection and analyses. Diverse groups of users rated usefulness of individual metadata fields for finding, identifying, selecting, and obtaining moving images. The results demonstrate a consistency across these evaluations with respect to (a) identification of a set of useful metadata fields highly rated by target users for each of the FRBR generic tasks, and (b) indication of a significant interaction between MIC metadata fields and the FRBR generic tasks. The findings provide timely feedback for the MIC implementation specifically, and valuable suggestions to other similar metadata application settings in general. They also suggest the feasibility of using the four IFLA FRBR generic tasks as a framework for user-centered functional metadata evaluations.
  3. Arora, S.K.; Li, Y.; Youtie, J.; Shapira, P.: Using the wayback machine to mine websites in the social sciences : a methodological resource (2016) 0.01
    0.007890998 = product of:
      0.015781997 = sum of:
        0.015781997 = product of:
          0.031563994 = sum of:
            0.031563994 = weight(_text_:b in 3050) [ClassicSimilarity], result of:
              0.031563994 = score(doc=3050,freq=2.0), product of:
                0.16126883 = queryWeight, product of:
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.045518078 = queryNorm
                0.19572285 = fieldWeight in 3050, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.542962 = idf(docFreq=3476, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3050)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Websites offer an unobtrusive data source for developing and analyzing information about various types of social science phenomena. In this paper, we provide a methodological resource for social scientists looking to expand their toolkit using unstructured web-based text, and in particular, with the Wayback Machine, to access historical website data. After providing a literature review of existing research that uses the Wayback Machine, we put forward a step-by-step description of how the analyst can design a research project using archived websites. We draw on the example of a project that analyzes indicators of innovation activities and strategies in 300 U.S. small- and medium-sized enterprises in green goods industries. We present six steps to access historical Wayback website data: (a) sampling, (b) organizing and defining the boundaries of the web crawl, (c) crawling, (d) website variable operationalization, (e) integration with other data sources, and (f) analysis. Although our examples draw on specific types of firms in green goods industries, the method can be generalized to other areas of research. In discussing the limitations and benefits of using the Wayback Machine, we note that both machine and human effort are essential to developing a high-quality data set from archived web information.