Search (4 results, page 1 of 1)

  • × author_ss:"Lin, X."
  • × year_i:[2000 TO 2010}
  1. Ding, W.; Lin, X.: Information Architecture : the design and integration of information spaces (2009) 0.01
    0.0061321636 = product of:
      0.024528654 = sum of:
        0.024528654 = weight(_text_:information in 1) [ClassicSimilarity], result of:
          0.024528654 = score(doc=1,freq=34.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.39984792 = fieldWeight in 1, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1)
      0.25 = coord(1/4)
    
    Abstract
    Information Architecture is about organizing and simplifying information, designing and integrating information spaces/systems, and creating ways for people to find and interact with information content. Its goal is to help people understand and manage information and make right decisions accordingly. In the ever-changing social, organizational and technological contexts, Information Architects not only design individual information spaces (e.g., individual websites, software applications, and mobile devices), but also tackle strategic aggregation and integration of multiple information spaces across websites, channels, modalities, and platforms. Not only they create predetermined navigation pathways, but also provide tools and rules for people to organize information on their own and get connected with others. Information Architects work with multi-disciplinary teams to determine the user experience strategy based on user needs and business goals, and make sure the strategy gets carried out by following the user-centered design (UCD) process via close collaboration with others. Drawing on the author(s) extensive experience as HCI researchers, User Experience Design practitioner, and Information Architecture instructors, this book provides a balanced view of the IA discipline by applying the IA theories, design principles and guidelines to the IA and UX practices. It also covers advanced topics such as Enterprise IA, Global IA, and Mobile IA. In addition to new and experienced IA practitioners, this book is written for undergraduate and graduate level students in Information Architecture, Information Sciences, Human Computer Interaction, Information Systems and related disciplines.
    Series
    Synthesis lectures on information concepts, retrieval, and services ; xx
  2. Lin, X.; Bui, Y.: Information visualization (2009) 0.01
    0.0051002675 = product of:
      0.02040107 = sum of:
        0.02040107 = weight(_text_:information in 3818) [ClassicSimilarity], result of:
          0.02040107 = score(doc=3818,freq=12.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.3325631 = fieldWeight in 3818, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3818)
      0.25 = coord(1/4)
    
    Abstract
    The goal of information visualization (IV) is to amplify human cognition through computer-generated, interactive, and visual data representation. By combining the computational power with human perceptional and associative capabilities, IV will make it easier for users to navigate through large amounts of information, discover patterns or hidden structures of the information, and understand semantics of the information space. This entry reviews the history and background of IV and discusses its basic principles with pointers to relevant resources. The entry also summarizes major IV techniques and toolkits and shows various examples of IV applications.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  3. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.00
    0.003091229 = product of:
      0.012364916 = sum of:
        0.012364916 = weight(_text_:information in 1080) [ClassicSimilarity], result of:
          0.012364916 = score(doc=1080,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.20156369 = fieldWeight in 1080, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1080)
      0.25 = coord(1/4)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
    Source
    Information processing and management. 39(2003) no.5, S.689-706
  4. Lin, X.; Aluker, S.; Zhu, W.; Zhang, F.: Dynamic concept representation through a visual concept explorer (2006) 0.00
    0.0025239778 = product of:
      0.010095911 = sum of:
        0.010095911 = weight(_text_:information in 254) [ClassicSimilarity], result of:
          0.010095911 = score(doc=254,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16457605 = fieldWeight in 254, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=254)
      0.25 = coord(1/4)
    
    Abstract
    In the digital environment, knowledge structures need to be constructed automatically or through self-organization. The structures need to be emerged or discovered form the underlying information. The displays need to be interactive to allow users to determine meanings of the structures. In this article, we investigate these essential features of dynamic concept representation through a research prototype we developed. The prototype generates an instant concept map upon user's request. The concept map visualizes both concept relationships and hidden structures in the underlying information. It serves as a good example of knowledge organization as an interface between users and literature.

Authors

Types